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ChatGPT: move to midpoint
Claude: Move to point O
Mistral:
- Start at the origin (0, 0).
- Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t
the right, and so on, increasing the step size by 1 after every two turns.

Qwen3-30b6:

https://bramas.fr 27



ChatGPT: move to midpoint

Claude: Move to point O

Mistral:
_ Stal’t at Thought Process

— M ove 1 Okay, let's try to figure out how to approach this problem. So, there are two dimensionless robots, hen 2 un |'|:S down , 't
th . h _t me and another one. We're both executing the same algorithm, and the goal is to gather at the
e rlg y 9 same point. But | don't know if the other robot is currently activated like | am. Hmm, what should | urns.

Qwen3-3@KE:

First, | need to understand the problem better. Since both robots are dimensionless, maybe they
don't have any physical size, which might affect how they move or interact. But the main issue is
that we need to gather at the same point, but we don't know the other robot's status. So, maybe the
challenge is about coordination without knowing if the other is active or not.

Since we're both executing the same algorithm, maybe there's a standard protocol for gathering.
But the problem is the uncertainty about the other's activation. So, perhaps the solution involves
some kind of synchronization or signal that allows us to determine if the other is active and then
move towards them.

Wait, but how can we communicate if we don't have any sensors or communication methods? The
problem doesn't mention any. So maybe we have to rely on movement patterns or some
prearranged strategy.

If we both follow the same algorithm, maybe we need to decide on a strategy that ensures we meet
regardless of activation status. For example, if we both move in a certain pattern, like spiraling out
or moving in a circle, but that might not work if one is inactive.

Alternatively, since we can't communicate, maybe we need to use some form of randomness. Like,
each robot has a chance to move in a certain direction or stay still, but that might not guarantee
meeting.

https://bramas.fr 28
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Thought Process

Okay, let's try to figure out how to approach this problem. So, there are two dimensio
me and another one. We're both executing the same algorithm, and the goal is to gat
same point. But | don't know if the other robot is currently activated like | am. Hmm, v
do?

First, | need to understand the problem better. Since both robots are dimensionless, r
don't have any physical size, which might affect how they move or interact. But the rr
that we need to gather at the same point, but we don't know the other robot's status.
challenge is about coordination without knowing if the other is active or not.

Since we're both executing the same algorithm, maybe there's a standard protocol fo
But the problem is the uncertainty about the other's activation. So, perhaps the soluti
some kind of synchronization or signal that allows us to determine if the other is activ
move towards them.

Wait, but how can we communicate if we don't have any sensors or communication n
problem doesn't mention any. So maybe we have to rely on movement patterns or soi
prearranged strategy.

If we both follow the same algorithm, maybe we need to decide on a strategy that en:
regardless of activation status. For example, if we both move in a certain pattern, like
or moving in a circle, but that might not work if one is inactive.

Alternatively, since we can't communicate, maybe we need to use some form of rand:
each robot has a chance to move in a certain direction or stay still, but that might not
meeting.

But the problem says we're executing the same algorithm. So maybe the algorithm needs to
account for the possibility that the other is inactive. So perhaps the algorithm includes a waiting
period, or a way to detect the other robot's presence.

Wait, but since we're dimensionless, maybe we can't detect each other unless we are at the same
point. So maybe the algorithm needs to have a way to move towards a point where we can meet, but
how?

Another thought: if both robots are in the same environment, maybe they can use the environment's
features. But since the problem doesn't specify the environment, maybe it's a 2D plane or
something.

In standard robot gathering problems, sometimes robots use a strategy like moving towards a
common point, or using a symmetry-breaking approach. But since we don't know if the other is
active, maybe we need to assume that if the other is active, they're also following the same
algorithm. So maybe the algorithm is designed to have both robots converge to a single point
regardless of their initial positions.

But how do they determine that point? If they can't communicate, maybe they use a random point
or a fixed reference. However, if both choose the same point, they'll meet. But if they choose
different points, they won't. So maybe the algorithm includes a way to decide on a common
reference.

Alternatively, if the robots can sense each other's presence, but the problem doesn't mention that.
So perhaps the problem assumes that the robots can only move and not sense anything else.

Wait, but if they can't sense each other, how can they know when they meet? Maybe the problem is
more about the algorithm's design that ensures that if both are active, they meet, but if one is
inactive, the active one can still gather. But the problem says both are executing the same
algorithm, so maybe the algorithm needs to handle both cases.

This is a bit confusing. Let me think again. The key points:

e Two dimensionless robots.

e Same algorithm.

e Goal is to gather at the same point.

¢ Don't know if the other is activated (i.e., maybe one is inactive, the other is active, or both are
active? Or maybe the other's activation status is unknown, but both are executing the same
algorithm, which might mean they're both active? Or maybe the algorithm is such that the
other might not be activated yet.)

Wait, the problem says "you don't know if the other is activated right now like you are." So I'm
activated, and | don't know if the other is activated. So maybe the other could be inactive or active.
But the algorithm is the same for both. So the algorithm needs to work whether the other is active
or not.

So, if the other is active, then both are executing the algorithm. If the other is inactive, then only |
am executing it. So the algorithm needs to handle both scenarios.

In the case where the other is inactive, | need to find a way to gather, but since the other isn't
moving, maybe | just stay still? But if the other is active, then | need to move towards them.

But how can | know if the other is active or not? The problem states that | don't know. So the
algorithm must be designed in a way that regardless of the other's activation status, the gathering is
achieved.

Wait, but if I'm the only one active, then the other is inactive. So maybe the algorithm includes a way
to wait for the other to activate, but if the other is never activated, then | might just keep waiting.
But that's not efficient.

Alternatively, maybe the algorithm is designed so that if the other is active, we both move towards
each other, and if the other is inactive, | stay still. But without knowing the other's status, how can |
decide?

This seems like a problem of coordination without communication. In distributed algorithms, there
are strategies for such problems. One common approach is to use a randomized algorithm where
each robot has a certain probability to move or stay, which increases the chance of meeting. But
since the robots are executing the same algorithm, maybe they both use the same strategy.
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Mistral:
- Start at the origin (0, 0).
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the right, and so on, increasing the step size by 1 after every two turns.
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Another idea: if both robots follow a deterministic algorithm that ensures they meet if both are
active, but if only one is active, the active one can still gather. But how?

Alternatively, maybe the algorithm is to move in a specific pattern, like a spiral or a search pattern,
that eventually covers all possible points. But without knowing the other's position, it's hard to say.

Wait, maybe the problem is similar to the "gathering problem" in distributed computing, where
robots need to meet. In that case, common solutions involve symmetry breaking. For example, if the
robots can choose a direction or move in a way that breaks symmetry.

But since both robots are executing the same algorithm, if they are in symmetric positions, they
might move in the same way, leading to no progress. So the algorithm needs to have a way to break
symmetry, perhaps by using some randomness or a unique identifier.

But the problem states that the robots are dimensionless, which might mean they don't have unique
identifiers. So randomness might be the way to go.

So, the algorithm could be: each robot, with some probability, decides to move in a certain direction
or stay still. Over time, the probability of them moving towards each other increases, leading to a
meeting.

But how to formalize this? Maybe each robot has a random walk algorithm, moving in random
directions. If both are active, they might eventually meet. If only one is active, it's unclear how that
helps, but maybe the inactive one is considered as a fixed point, so the active one can move
towards it. But without knowing where the other is, how?

Alternatively, maybe the algorithm is to move towards a predefined point, like the origin. But if both
are moving towards the origin, they will meet there. However, if only one is active, then the active
one goes to the origin, but the inactive one is already there? Or not?

Wait, the problem says the goal is to gather to the same point. So if the other is inactive, maybe
they are already at some point, and | need to move to that point. But | don't know where they are. So
that's a problem.

Alternatively, maybe the algorithm is to move in a certain pattern that covers the space, ensuring
that if the other is active, they'll eventually be in the same place. But this is vague.

robots need to gather, and they can't communicate, a common strategy is for one to stay still and
the other to move, but since both are executing the same algorithm, they can't know which one to
be.

Wait, but if both follow the same algorithm, they might both decide to move, leading to them moving
away from each other. So that's not good.

So maybe the solution is to have a randomized algorithm where each robot has a certain probability
to move or stay, which increases the chance of them meeting. For example, each robot with 50%
chance decides to move in a random direction, and 50% to stay still. Over time, the probability that
they meet increases.

Alternatively, if they can't use randomness, maybe a deterministic algorithm that ensures meeting.
But in a deterministic setting without communication, it's challenging.

Another thought: since the robots are dimensionless, maybe they can use the environment's
coordinates. If there's a common coordinate system, they can agree on a meeting point. But the
problem doesn't mention that.

Alternatively, the algorithm could be to move in a spiral pattern, expanding outward, which would
eventually cover all points. If the other is active, they might also be moving in a spiral, and their
paths might intersect. But this is not guaranteed.

Wait, but the problem says the goal is to gather to the same point. So maybe the algorithm needs to
have a way to decide on a common point. For example, both robots use the same method to
calculate a meeting point, like the midpoint between their starting positions. But if one is inactive,
then the active one would go to that midpoint, but the inactive one might not be there.

But how would the active robot know where the other is? Unless the algorithm assumes that the
other is at a certain position, which isn't given.

This is really challenging. Maybe | need to look up standard solutions for robot gathering problems.
But since | can't access external information, | have to think from first principles.

In distributed systems, for two robots to gather, one common approach is for one to stay still and
the other to move. But since both are executing the same algorithm, they can't know which one to
be. So this leads to a deadlock.
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Thought Process

But the problem says we're executing the same algorithm. So maybe the algorithm needs to
account for the possibility that the other is inactive. So perhaps the algorithm includes a wait|
period, or a way to detect the othef'robot's presence.
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be. So this leads to a deadlock.
But how would the active robot know where the other is? Unless the algorithm assumes that the

other is at a certain position, which isn't given.

This is really challenging. Maybe | need to look up standard solutions for robot gathering problems.

But since | can't access external information, | have to think from first principles.

In distributed systems, for two robots to gather, one common approach is for one to stay still and
the other to move. But since both are executing the same algorithm, they can't know which one to
be. So this leads to a deadlock.




https://bramas.fr

Mobile Robots

S W'ALS on o 20 W&MA&

L — AWV

g %

s ASvne o Sync e FS ¥V
Tros

) Ny CIMUNIN £

Suzuki, ., Yamashita, M.: Distributed anonymous mobile
robots: Formation of geometric patterns

33



https://bramas.fr

34



https://bramas.fr

Mobile Robots

S Vi C

/N

-

|

o

J e

35



Mobile Robots

S VYivC

SSYNC

https://bramas.fr

A @o move o Bl /mfo/&//a

o 09— >0c—¢

(4 o

36



https://bramas.fr

Mobile Robots

S Vi C

/N

SN C T Ry

-

37



https://bramas.fr

38



https://bramas.fr

Mobile Robots

39



Mobile Robots

ok move. Lilhe SSYWE

™ y

|

A g \/N (. (A ,\L A megﬂl\ éwzé7

Flocchini, P,, Santoro, N., Sudo, Y., Wada, K.: On Asynchrony, Memory, and
Communication: Separations and Landscapes.

https://bramas.fr

40



https://bramas.fr

Mobile Robots

What

Co . Co Gyt

CA

S

41



Mobile Robots

\/\/Q\%(/ k./; A /T;ﬁ@& 7
EfQCuJ'(‘bV\ P/Lo[ﬂ—éeywx
O N N SN N

https://bramas.fr

42



https://bramas.fr

Mobile Robots

43



Mobile Robots

What

P\&O\Cja[)l‘ljft& PJLoA*ZUV\

E: Co (4 CZ Cl

pJLQD{Ith p

Efww,p[( . W - VoS

https://bramas.fr

Cé C@_;ﬂ CQ-(—]_ o

we = PlG )= Pla.)-Plas,)-

~
- BA A s W AT o %
i 4 ¥ s 0 / “ 5 S S . : PR
N S vy =T o K _ i O 3 Sl g )
B . e < PRSP [P . § o= el - » Ca
R ST THAETNET T s ' | E o Vo
. 2 R c 3 -~ ‘1: Y . [P 4
o] Loy H H B ; | ! > O i - s
S s . ! s - B . o) e - ."\ - L
N / y : . ¢ g - | ~ d 3 \ v 4 I
D \ H H N L 4 = ) o - @ o
{ -y - s . - e, A% - a : R @, Ty L L I
\* Q “Q‘ﬁ ‘-‘:11 . ST Y ) 2 - . 2 TN et > = " id o s A - 2
A
. ( O{i 7
Q ~

44



Mobile Robots

WQW(/ ¥ A /(’;{QL 7
Coodinate Syshom Tnvanin-b Prob be .
E=C. . ¢, ¢, ... ¢, ( C

pJLQD{IQmL p

EKOVVV\/Z\f pa\H?/w\ Waﬁ‘w ,

https://bramas.fr

45



Mobile Robots

t= G C.

pJLQD{IQmL

E eoum e

https://bramas.fr

: = > <,
. q".-w" -l b "\_4*~ 4 = B, .
J_z::.‘f..:,, L TR g v

Caoftclimoi( gagjw 1—"”0"'“0”“/’ PJZ,o[)«& 14

Co Co G G Gl

S does ) de poud - o Me/
C@maéf‘mwj{ g/a,olw\

pa\H?/w\ Wa\hw ,

:,_’ I | | =, R k . L. o .
o - o S P O R R I Sy T T e
\/\/ Q\m’ /D -

46



https://bramas.fr

Mobile Robots

Efewjf“b"\ Pﬂ_ogﬁeywxj

ﬂﬁﬁﬁﬁa[)(‘ljfc& PJLOA«ZZW\I
Caoflc[/‘moré( Sgs}w Invmf‘w/’ PJLol)ZK g

47



https://bramas.fr

Mobile Robots

E?‘QC,RJ’(‘(W\ PMLZOW\S

P\e,oucja[;[b‘f(& Er ok le s
QodJr'ma[( Sgg}w In uwu‘ow/’ PJLo[)«Zz S
T—e/l/m:‘r\a‘fr‘ag p/wévz/m 5}

48



https://bramas.fr

Mobile Robots

49



Mobile Robots

Q Jlo[:»vls

(Sowvxé cuuU

https://bramas.fr

LAT
N

-

i SYNC & SSyme
i svne & SSyne
fl SN = STyne
i SN = STyne

50



https://bramas.fr

Conclusion

*/7/9«/%%_,

Lamo(/zc_a,oa_,

1€

51






https://bramas.fr

Conclusion

Thank you!

53



https://bramas.fr

More details on the results

54



https://bramas.fr

RANT FSWC ¢ I WC

95



https://bramas.fr

i

ASYNC < D ywve

o > e

56



https://bramas.fr

i

ASYNC < D ywve

o >

57



https://bramas.fr

1 RSYNC <« S ymve

T

58



https://bramas.fr

59



