de Strasbourg

Q SORBONNE Université
b UNIVERSITE

On Restricting Separator Problems
in the OBLOT Computational Landscape

Quentin BRAMAS and Sébastien TIXEUIL

University of Strasbourg,
Sorbonne Université, LIP6, IUF

NETYS 2025

Slides and paper available at https://bramas.fr

Distributed Systems Computational Power

https://bramas.fr

Distributed Systems Computational Power

https://bramas.fr

Distributed Systems

https://bramas.fr

= ik Q y e
- s ¥ P 4 v
. > . ' D — T e YT LW -"_g b et NN s SheaSa ‘G.":pgf’ G [y R
g : LR » ‘ 4 - s % . . ” PN w . A R L il ~, -
» : [7 L : ‘ :) R 203 3
>3] - Ve o L _ . :)
| | . caz: & G o . y
’ .y B O e : e . A = s L. A o)
‘A " ® | e N B = f . ’ \ . e
- ol -
E i . | ‘ : . :
. ; . ‘ e R | - - A AN X ‘
: ' - e
: , R T R IR R TS FEE

“‘ - ¢ Lo
‘ . s, i B 4"
. B BT fea A &:4‘, N o o g
f “a -~ "”# - A 7
R A TS b Y Y, S el

Model | Tank

UV\So/\ML/{_

- 2y == w— e

I
T
N\
A
=
a
O
\/f_’
’/\
Ay
AN
A
0

_)

/%
1
N
A
(@)
—

-—— @y o

https://bramas.fr

https://bramas.fr

» -
A EXS g
- . S A T
. <t gma « DO
PRSI oacs :
= N i =2
e | -
> v i : |
. Vs
L

s .

U , 3
<™ 2’. : ro
o < 2 g & RI Y A S <
» .2 4 o AT - - o
. RS T A T
e 3 ca S

Distributed Systems Com

M ool

- Toaz - o
‘ RO ;
] S

D - I i /“ Lo 2 . ::‘-
IS) ; . y ':' ‘; b - ’ "?"‘* ‘-; B <!
\ \ Sy - “.'_\;,‘:\.&?} h“::l' > : < v, 4

\ = " ‘J}::ﬁ:.“\‘-v

o\
X %

{ 0, H,)

J

/I_M/@\ < {\-\4 \/\1 s
|

https://bramas.fr

Distributed Systems

M osed

https://bramas.fr

M

Distributed Systems Gomp

M DA& l,amd(QCoL/aﬁ

A .- 7\
g

a Sepr”

https://bramas.fr

https://bramas.fr

https://bramas.fr

https://bramas.fr

Mobile Robots

12

https://bramas.fr

Mobile Robots

13

https://bramas.fr

Mobile Robots

14

https://bramas.fr

15

https://bramas.fr

16

https://bramas.fr

B U

.—;;_'- - * P

17

https://bramas.fr

Mobile Robots

18

Mobile Robots

C/o C7
Ly LCM
L, LM
Ly A G
o oLert

https://bramas.fr

Mobile Robots

ESYNC - Fally - Sy

Co C 1 C, C A
Ly LeM o LeM s LeM
1, Le™ Le™ T LeM
1, o oLen LM L CM

7, L oM ZLU\T ZLCM

https://bramas.fr

https://bramas.fr

Mobile Robots

21

https://bramas.fr

Mobile Robots

Lcm - LCM |
: LCM LCM .
e - '. |
| ‘ ! ,
| : ; - LCM]

22

https://bramas.fr

Mobile Robots

S
WI
Ssyne 227
C/O C7 Ci C} C,L,
RIS LCM }
: LeM LCHM
Lert I' |
3 ': LCH]

23

https://bramas.fr

Mobile Robots

- ™ = = = . ™ Em a4 - m @m N =N

— pa— p—

24

Mobile Robots

fr SNt

1, LU M
Ty '3 L]
Ty L Ld]

https://bramas.fr

M M|
LaVl['
LA L)
I

25

https://bramas.fr

Mobile Robots

20

ChatGPT: move to midpoint
Claude: Move to point O
Mistral:
- Start at the origin (0, 0).
- Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t
the right, and so on, increasing the step size by 1 after every two turns.

Qwen3-30b6:

https://bramas.fr 27

ChatGPT: move to midpoint

Claude: Move to point O

Mistral:
_ Stal’t at Thought Process

— M ove 1 Okay, let's try to figure out how to approach this problem. So, there are two dimensionless robots, hen 2 un |'|:S down , 't
th . h _t me and another one. We're both executing the same algorithm, and the goal is to gather at the
e rlg y 9 same point. But | don't know if the other robot is currently activated like | am. Hmm, what should | urns.

Qwen3-3@KE:

First, | need to understand the problem better. Since both robots are dimensionless, maybe they
don't have any physical size, which might affect how they move or interact. But the main issue is
that we need to gather at the same point, but we don't know the other robot's status. So, maybe the
challenge is about coordination without knowing if the other is active or not.

Since we're both executing the same algorithm, maybe there's a standard protocol for gathering.
But the problem is the uncertainty about the other's activation. So, perhaps the solution involves
some kind of synchronization or signal that allows us to determine if the other is active and then
move towards them.

Wait, but how can we communicate if we don't have any sensors or communication methods? The
problem doesn't mention any. So maybe we have to rely on movement patterns or some
prearranged strategy.

If we both follow the same algorithm, maybe we need to decide on a strategy that ensures we meet
regardless of activation status. For example, if we both move in a certain pattern, like spiraling out
or moving in a circle, but that might not work if one is inactive.

Alternatively, since we can't communicate, maybe we need to use some form of randomness. Like,
each robot has a chance to move in a certain direction or stay still, but that might not guarantee
meeting.

https://bramas.fr 28

https://bramas.fr

ChatGPT: move to midpoint
Claude: Move to point O

Mistral:

- Start at the origin (0, 0).
- Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t

the right, and so on, increasing the step size by 1 after every two turns.

.A‘l

Thought Process

Okay, let's try to figure out how to approach this problem. So, there are two dimensio
me and another one. We're both executing the same algorithm, and the goal is to gat
same point. But | don't know if the other robot is currently activated like | am. Hmm, v
do?

First, | need to understand the problem better. Since both robots are dimensionless, r
don't have any physical size, which might affect how they move or interact. But the rr
that we need to gather at the same point, but we don't know the other robot's status.
challenge is about coordination without knowing if the other is active or not.

Since we're both executing the same algorithm, maybe there's a standard protocol fo
But the problem is the uncertainty about the other's activation. So, perhaps the soluti
some kind of synchronization or signal that allows us to determine if the other is activ
move towards them.

Wait, but how can we communicate if we don't have any sensors or communication n
problem doesn't mention any. So maybe we have to rely on movement patterns or soi
prearranged strategy.

If we both follow the same algorithm, maybe we need to decide on a strategy that en:
regardless of activation status. For example, if we both move in a certain pattern, like
or moving in a circle, but that might not work if one is inactive.

Alternatively, since we can't communicate, maybe we need to use some form of rand:
each robot has a chance to move in a certain direction or stay still, but that might not
meeting.

But the problem says we're executing the same algorithm. So maybe the algorithm needs to
account for the possibility that the other is inactive. So perhaps the algorithm includes a waiting
period, or a way to detect the other robot's presence.

Wait, but since we're dimensionless, maybe we can't detect each other unless we are at the same
point. So maybe the algorithm needs to have a way to move towards a point where we can meet, but
how?

Another thought: if both robots are in the same environment, maybe they can use the environment's
features. But since the problem doesn't specify the environment, maybe it's a 2D plane or
something.

In standard robot gathering problems, sometimes robots use a strategy like moving towards a
common point, or using a symmetry-breaking approach. But since we don't know if the other is
active, maybe we need to assume that if the other is active, they're also following the same
algorithm. So maybe the algorithm is designed to have both robots converge to a single point
regardless of their initial positions.

But how do they determine that point? If they can't communicate, maybe they use a random point
or a fixed reference. However, if both choose the same point, they'll meet. But if they choose
different points, they won't. So maybe the algorithm includes a way to decide on a common
reference.

Alternatively, if the robots can sense each other's presence, but the problem doesn't mention that.
So perhaps the problem assumes that the robots can only move and not sense anything else.

Wait, but if they can't sense each other, how can they know when they meet? Maybe the problem is
more about the algorithm's design that ensures that if both are active, they meet, but if one is
inactive, the active one can still gather. But the problem says both are executing the same
algorithm, so maybe the algorithm needs to handle both cases.

This is a bit confusing. Let me think again. The key points:

e Two dimensionless robots.

e Same algorithm.

e Goal is to gather at the same point.

¢ Don't know if the other is activated (i.e., maybe one is inactive, the other is active, or both are
active? Or maybe the other's activation status is unknown, but both are executing the same
algorithm, which might mean they're both active? Or maybe the algorithm is such that the
other might not be activated yet.)

Wait, the problem says "you don't know if the other is activated right now like you are." So I'm
activated, and | don't know if the other is activated. So maybe the other could be inactive or active.
But the algorithm is the same for both. So the algorithm needs to work whether the other is active
or not.

So, if the other is active, then both are executing the algorithm. If the other is inactive, then only |
am executing it. So the algorithm needs to handle both scenarios.

In the case where the other is inactive, | need to find a way to gather, but since the other isn't
moving, maybe | just stay still? But if the other is active, then | need to move towards them.

But how can | know if the other is active or not? The problem states that | don't know. So the
algorithm must be designed in a way that regardless of the other's activation status, the gathering is
achieved.

Wait, but if I'm the only one active, then the other is inactive. So maybe the algorithm includes a way
to wait for the other to activate, but if the other is never activated, then | might just keep waiting.
But that's not efficient.

Alternatively, maybe the algorithm is designed so that if the other is active, we both move towards
each other, and if the other is inactive, | stay still. But without knowing the other's status, how can |
decide?

This seems like a problem of coordination without communication. In distributed algorithms, there
are strategies for such problems. One common approach is to use a randomized algorithm where
each robot has a certain probability to move or stay, which increases the chance of meeting. But
since the robots are executing the same algorithm, maybe they both use the same strategy.

29

ChatGPT: move to midpoint
Claude: Move to point O
Mistral:
- Start at the origin (0, 0).
- Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t
the right, and so on, increasing the step size by 1 after every two turns.

Qwen3-30b6:

account for the possibility that the other is
period, or a way to detect the othefrobot's

Wait, tbut sénce we're Idimens[i)or][less, mayb
ere are two dimensioniess robots, Alternatively, the problem might have a standard solution. For example, in the case where two

https://bramas.

int. So maybe the algorithm needs to ha
ancﬁg e?goamsyto ga?he?att e

W?
ated like | am. Hmm, what should |

Another thought: if both robots are in the s
features. But since the problem doesn't sp

s argofgRmgonless, maybe they

O {R'Stidard fobdt gathering frdblems, so

nthar ralhat!e ctatiie CA mavdha tha

Another idea: if both robots follow a deterministic algorithm that ensures they meet if both are
active, but if only one is active, the active one can still gather. But how?

Alternatively, maybe the algorithm is to move in a specific pattern, like a spiral or a search pattern,
that eventually covers all possible points. But without knowing the other's position, it's hard to say.

Wait, maybe the problem is similar to the "gathering problem" in distributed computing, where
robots need to meet. In that case, common solutions involve symmetry breaking. For example, if the
robots can choose a direction or move in a way that breaks symmetry.

But since both robots are executing the same algorithm, if they are in symmetric positions, they
might move in the same way, leading to no progress. So the algorithm needs to have a way to break
symmetry, perhaps by using some randomness or a unique identifier.

But the problem states that the robots are dimensionless, which might mean they don't have unique
identifiers. So randomness might be the way to go.

So, the algorithm could be: each robot, with some probability, decides to move in a certain direction
or stay still. Over time, the probability of them moving towards each other increases, leading to a
meeting.

But how to formalize this? Maybe each robot has a random walk algorithm, moving in random
directions. If both are active, they might eventually meet. If only one is active, it's unclear how that
helps, but maybe the inactive one is considered as a fixed point, so the active one can move
towards it. But without knowing where the other is, how?

Alternatively, maybe the algorithm is to move towards a predefined point, like the origin. But if both
are moving towards the origin, they will meet there. However, if only one is active, then the active
one goes to the origin, but the inactive one is already there? Or not?

Wait, the problem says the goal is to gather to the same point. So if the other is inactive, maybe
they are already at some point, and | need to move to that point. But | don't know where they are. So
that's a problem.

Alternatively, maybe the algorithm is to move in a certain pattern that covers the space, ensuring
that if the other is active, they'll eventually be in the same place. But this is vague.

robots need to gather, and they can't communicate, a common strategy is for one to stay still and
the other to move, but since both are executing the same algorithm, they can't know which one to
be.

Wait, but if both follow the same algorithm, they might both decide to move, leading to them moving
away from each other. So that's not good.

So maybe the solution is to have a randomized algorithm where each robot has a certain probability
to move or stay, which increases the chance of them meeting. For example, each robot with 50%
chance decides to move in a random direction, and 50% to stay still. Over time, the probability that
they meet increases.

Alternatively, if they can't use randomness, maybe a deterministic algorithm that ensures meeting.
But in a deterministic setting without communication, it's challenging.

Another thought: since the robots are dimensionless, maybe they can use the environment's
coordinates. If there's a common coordinate system, they can agree on a meeting point. But the
problem doesn't mention that.

Alternatively, the algorithm could be to move in a spiral pattern, expanding outward, which would
eventually cover all points. If the other is active, they might also be moving in a spiral, and their
paths might intersect. But this is not guaranteed.

Wait, but the problem says the goal is to gather to the same point. So maybe the algorithm needs to
have a way to decide on a common point. For example, both robots use the same method to
calculate a meeting point, like the midpoint between their starting positions. But if one is inactive,
then the active one would go to that midpoint, but the inactive one might not be there.

But how would the active robot know where the other is? Unless the algorithm assumes that the
other is at a certain position, which isn't given.

This is really challenging. Maybe | need to look up standard solutions for robot gathering problems.
But since | can't access external information, | have to think from first principles.

In distributed systems, for two robots to gather, one common approach is for one to stay still and
the other to move. But since both are executing the same algorithm, they can't know which one to
be. So this leads to a deadlock.

30

ChatGPT: move to midpoint
Claude: Move to point O
Mistral:
- Start at the origin (0, 0).
- Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t
the right, and so on, increasing the stepreimE=titt=aitoikmaioiii=ti

robots need to gather, and they can't communicate, a common strategy is for one to stay still and
. -1 . Ole u the other to move, but since both are executing the same algorithm, they can't know which one to
Thought Process

But the problem says we're executing the same algorithm. So maybe the algorithm needs to
account for the possibility that the other is inactive. So perhaps the algorithm includes a wait|
period, or a way to detect the othef'robot's presence.

be.

Wait, but if both follow the same algorithm, they might both decide to move, leading to them moving
Okay, let's try to figure out how to approach this problem. So, th < 21 Oy $1Se W& 1§ dimensionless, maybe we can't dr;&]t‘e‘l:l;aAtT\/AéI; ih‘e;‘)r‘(;t)ié;;]‘ away from each other. So that's not good.

d another one. We're both executing the same algorithm P ey Mmavie the algorithin needs to ha ' s : . ‘ o
SR a' : : 9 . 9 = Thow? robots need to gather, and So maybe the solution is to have a randomized algorithm where each robot has a certain probability
same point. But | don't know if the other robot is currently activ

e Another thought: if both robots are in the same environ - the otherito move, but sinc to move or stay, which increases the chance of them meeting. For example, each robot with 50%

features. But since the problem doesn't spgcifytheleny 4,5 chance decides to move in a random direction, and 50% to stay still. Over time, the probability that
First, | need to understand the problem better. Since both robot something. they meet increases

. o
don't have any physical size, which might affect how they move In standard robot gathering problems, sometimes roboi Walt' but if both follow the e . .
that wia naad tn mathar ot tha cama nnint kit wia dantt Laau th | Alternatively, if they can't use randomness, maybe a deterministic algorithm that ensures meeting.

Another idea: if both robots follow a.deterministic alaorithm that ensures thev meet if both are ng appr?acr awayfrom/each other:Sol But in a deterministic setting without communication, it's challenging
active, but To break this, the algorithm must have a way to break symmetry. This is typically done with p Gl D EE !)

) : : . .) h So maybe the selution.is to : _ _ :
randomness. So each robot independently decides with some probability to be the "mover" or the (2 EDLERNE ; y - hich i Another thought: since the robots are dimensionless, maybe they can use the environment's
" " ;] i O move or stay, wnicn Incri . . . ‘
SEET 7 L ERElREs U0 mos SR U eiler SEys, Wik iness I loen G el @ e, Eey) il - ~ coordinates. If there's a common coordinate system, they can agree on a meeting point. But the
thateventy move away, but with probability, they might meet eventually. tycan't con 'chance decides to-move’in

_ e the same) problem doesn't mention that.
Wait,'mayb So the algorithm could be: each robot, with a 50% chance, decides to move in a random direction or . . they meet Increases.
robots nee(stay still. If they decide to move, they move in a random direction for a certain distance. If they Igorithm inc : : Alternatively, the algorithm could be to move in a spiral pattern, expanding outward, which would
robotsigan: decide to stay, they stay. Over time, the probability that one moves and the other stays increases, Alternatively, if they can't u eventually cover all points. If the other is active, they might also be moving in a spiral, and their

. leading to a meeting. MEFSPIESE | But'in'a deterministic Settin paths might intersect. But this is not guaranteed.
But'since b obots can o

mightimeve CUt Since the problem says the robots are executing the same algorithm, this approach would work Veanthey k. Another thought: since the Wait, but the problem says the goal is to gather to the same point. So maybe the algorithm needs to

because both have the same probability, so eventually, one will move and the other stay, allowing : . .
SYMMmEtY,a . o to meet. ires thatift -coordinates. If there!s@acol have a way to decide on a common point. For example, both robots use the same method to

Alternativel

But the pro the probler problem doesn't mention tl calculate a meeting point, like the midpoint between their starting positions. But if one is inactive,

Alternatively, if the robots can sense each other, they could adjust their movement, but since the

. by handle bot|
identifiers.! problem doesn't mention sensing, we have to assume they can't.

"he key poir Alternatively, the algorithm

. I M e i : : : . . .
So, the algc Another possible solution is to use a "wait-for-activation" strategy. The robot waits for a certain eventually-cover-all-points: But how would the active robot know where the other is? Unless the algorithm assumes that the

or stay still. time, and if the other is activated, they will start moving. But without knowing the other's status, this aths miaht intersect. But{ °ther is at a certain position, which isn't given.
meeting. might not work. 3 g :

then the active one would go to that midpoint, but the inactive one might not be there.

Wait, but if the other is inactive, maybe they are not moving. So the active robot could move in a Wait, but the problem says Ui (B el Gl Eiea ises 1o e) SEre Rl 89 LHeis o) a0 SEuEiliE Al Cik:

But how to -
certain pattern that covers the space, and if the other is inactive, the active robot will eventually have a way to decide on a (But since | can't access external information, | have to think from first principles.

elleiens: reach them. But if the other is active, they would also be moving, so the paths might cross St ; ;
helps, but r ' ' ' ' calculate a meeting point, | 'n distributed systems, for two robots to gather, one common approach is for one to stay still and

. But how to design such a pattern? For example, moving in a spiral or a grid search pattern. However, . i i i ' i
towards it. " ' g P _ P (11 .g .F') g p then the active one would ¢ the other to move. But since both are executing the same algorithm, they can't know which one to
this requires knowledge of the environment, which isn't specified. N be. So this leads to a deadlock

Given all these possibilities, the most plausible solution seems to involve using a randomized But how would the active rc _ _ o o el e g

algorithm to break symmetry, allowing the robots to eventually meet regardless of activation status. other is at a certain position, which isn't given_
One goes it so the robot should randomly decide to move or stay, which increases the chance of meeting if the

Wait, the p| °ther is active, and if the other is inactive, the active robot might eventually reach them by moving This is really challenging. Maybe | need to look up standard solutions for robot gathering problems.
!

they are alr " @ Pattem. But since | can't access external information, | have to think from first principles.

that's a pro But | need to structure this into a coherent answer. The key points would be: use randomness to
break symmetry, so that one robot moves and the other stays, leading to a meeting. If the other is In distributed systems, for two robots to gather, one common approach is for one to stay still and

h -tt S - / / b r a m a S Alternativel ;. tive, the active robot's movement will eventually cover the space and reach the inactive one. the other to move. But since both are executing the same algorithm, they can't know which one to 3 1
p that If the ou IVl 19 UVLIVL) LIVY 1T WVLTILUMUITY MY 1 LY DUl v NIV, UL LD 19 VAU, be. So this Ieads to a deadlock.

Alternativel
are moving

ChatGPT: move to midpoint
Claude: Move to point O
Mistral:

- Start at the origin (0, 0).

Move 1 unit to the right, then 1 unit up, then 2 units to the left, then 2 units down, t

the right, and so on, increasing the step:size-by-l-after.every-two-turns.
@ IDO" . heth - ine

But the problem says we're executing the same algorithm. So maybe the algorithm needs to
account for the possibility that the other is inactive. So perhaps the algorithm includes a wa|t|n§)e

e Two dimensionless robots.

Since both robots are executing the same algorlthm and cannot commumcate a randomlzed approach

Thought Process period, or a way to detect the othef'robot's'presence.

Okay, let's try to figure out how to approach this problem. So, tl
me and another one. We're both executing the same algorithm,
same point. But | don't know if the other robot is currently activ
do?

paint. So maybe the algorithm needs to have away to'r
how?

Another thought: if both robots are in the same environ
features. But since the problem doesn't specify the eny

First, | need to understand the problem better. Since both robot something.

don't have anv phvsical size. which miaht affect how thev move

Wait, but since we're dimensionless, maybewe can'tde ="t coCh ot o Dhiess v

I Wait hut if hath fallnw tha

e Same algorithm.

Wait, b

D _

..r-'.

Alternatively, the problem mi 1 OELREL QIR s
robots need to gather, and tisyrecayibedbmeniiiicats, to beveraoarsteategy i Jorithme td etagatiti -
therotherito move; but since o1 “eOEREBUNATCIE @szres i
be. decides to move in.a randon

BRhanceel /tRsRTt @G W ITRIhES AR [Bes
LAHECLION, alid OU 70 LOStdy, SUi

aet increases.
1nrithm thoav mi

2110)

he sarr&palgocldat‘mrt&tsvemaghtmmrth decide to move, leading to them moving

JUIC OUICT IS deLvaled (.e., aybe O 1S MiaCuUve, UM act|ve or both are

ioth are executing the same
as a ceftathnprohabitiiat the
‘obot with 50%
e RIRRIRIEY thatm

er could be inactive or active!

o

IS necessary to break symmetry and ensure eventual meetmg Here's how It works

https://bramas.

" ——

robots can

1A IPET O H Py ‘:;_ﬂ HREay .f}:r).n{ 0"':?»:"(‘.5 gyan ahet iy

other's prese

But'since bofi robots can o
might'move in the «

symmetry,perhaps

w can they k
sures that if t
- the problen

But the problem statas.t
> handle bot|

identifiers. Sodapienass sk thaamay Lo g8,
The key poir
hnotbeujub &xdbleacihutiob dd, twitbesoimeifobabiivk e cites ty. Moy eoipos \eaittior dicection

So, the algc

e i e dvingiadwandae aeh wiher inomvysad)

meeting. m|ght not Work

; . .
But how to foriiaiiZa tid3 N B d IR MEn B HES té“? RER WAV SR SRR 2RBGAYPR Foslibmeve ina
certain pattern thehj overs the space if the othergs/ inactive, the actlve robot will eventhally

e

irections. If both are active | eventu 1\“ meet. one Js active, it's unclear h
ellziedalz, reach them. But' 1 elon?wgr is active, t q’wgy would also be mov{ng SO tﬁ{e paths might cross.

helps, but maybe the inactive one is considered as a fixed point, so the active one can move

ow o, desian suc attern? For exa mple, moving in a spiral or a grid search pattern. However
towards it. Bu?wlt Know! nlg 8RR tlﬁ GW? 9 P 9 P ’
this reqmres knowledge of the enwronment which isn't specified.

Alternatively, mayie, the alooftimiR oMoy donalds @ BIRASHRed ROIB Y IR ANRiIRY Qs RidhiLegth

are moving towards theasiai, Liewuil, mfshiHaeis: FHowevsr \'/feﬂf&]é(ll?q‘?e!e? aciivgicied Lo aelk atus.
one goes to thy erigiBphUHABdNacdNe PR dRalE A Eherad O AR increases the chance of meeting if the

Wait, the probft‘é'hﬁ@é;%tﬂ‘rﬁ% goAride Yaths B THE sHIR @ PBmECRY Figld SYRBIMRAIN G0N AR Py &noving
they are aIreagyaﬁasgerqﬁné point, and | need to move to that point. But | don't know where they are. So

that's a problérbt. | need to structure this into a coherent answer. The key points would be: use randomness to
break symmetry, so that one robot moves and the other stays, leading to a meeting. If the other is

Alternatively, faavig the. 2JoRri BRI S0 BIRKG I if QURILRRFSSLERRL CRYELS G SRAGRSASUIRAD ne.

that if the other. is.active, they.ll eventually be in.the same place. But this.is. vague.

Alternatively, if they can't usg,;
But'in'a deterministic'settinc

I Y RI=R RS 28 AN) A Sy

Wn%r@@m%f - a'- aly Hha W e G GG T
it '4tg¢@rﬂt@me@tgm this hallehsinghteead

Another thought: since the rotgisaretBénpessieonesss Maybeathe yocast hiserdh woent's
coordinates: |f there!siacomhzve soaginatecystens tueyroan poirecFon exareeienHaibirdbSistuite
problem doesn’'t‘mention that: te a meeting point, like the midpoint between thei

T EAIMe

" . the active oneg would goto
Alternatively, the algorithm 2tomoveinas

eventually cover all points. || theotﬁé}‘qslgéﬁﬁé%‘{“
paths might intersect. But th{: 1§15 A4ratale oS
Wait, but the problem says th h'éo%fealt RN LY s Boli VAR Ay Phay R BNE A

But since |.c n 't access external info m tion, | have to thin
have a way to decide on a common pom? For example, bot s use ﬂwe same method

Y ORS o P
SOEKEKARW

- -

\ral and thelr

)e the algorithm includes a way.

n | mt%nt just kee V{/altlng

lgori needs

method to
ctive, we both move towards

f |Q£@O’l$ﬁép§gg\ll% how can |

(=

iy asapEnms, there

andomized algorithm where
the chance of meeting. But

r [abot gatietirepprelsleiesy.

Vi i niIvewuw v

from fJ[rst principles.

calculate a meeting point, lik¢! f#iétﬁtraw@tﬁvs*eméﬁrtm@mtrn@ BAEEH) BERTBRR FPRaRENE for one
then the active one would ¢d 16 PHAE HdPEBHS: Bt RES PR AEORE AR Host snipalgorithm, they can't kne

be. So this leads to a deadlock.
But how would the active robot know where the other is? Unless the algorithm assumes that the

other is at a certain position, which isn't given.

This is really challenging. Maybe | need to look up standard solutions for robot gathering problems.

But since | can't access external information, | have to think from first principles.

In distributed systems, for two robots to gather, one common approach is for one to stay still and
the other to move. But since both are executing the same algorithm, they can't know which one to
be. So this leads to a deadlock.

https://bramas.fr

Mobile Robots

S W'ALS on o 20 W&MA&

L — AWV

g %

s ASvne o Sync e FS ¥V
Tros

) Ny CIMUNIN £

Suzuki, ., Yamashita, M.: Distributed anonymous mobile
robots: Formation of geometric patterns

33

https://bramas.fr

34

https://bramas.fr

Mobile Robots

S Vi C

/N

-

|

o

J e

35

Mobile Robots

S VYivC

SSYNC

https://bramas.fr

A @o move o Bl /mfo/&//a

o 09— >0c—¢

(4 o

36

https://bramas.fr

Mobile Robots

S Vi C

/N

SN C T Ry

-

37

https://bramas.fr

38

https://bramas.fr

Mobile Robots

39

Mobile Robots

ok move. Lilhe SSYWE

™ y

|

A g \/N (. (A ,\L A megﬂl\ éwzé7

Flocchini, P,, Santoro, N., Sudo, Y., Wada, K.: On Asynchrony, Memory, and
Communication: Separations and Landscapes.

https://bramas.fr

40

https://bramas.fr

Mobile Robots

What

Co . Co Gyt

CA

S

41

Mobile Robots

\/\/Q\%(/ k./; A /T;ﬁ@& 7
EfQCuJ'(‘bV\ P/Lo[ﬂ—éeywx
O N N SN N

https://bramas.fr

42

https://bramas.fr

Mobile Robots

43

Mobile Robots

What

P\&O\Cja[)l‘ljft& PJLoA*ZUV\

E: Co (4 CZ Cl

pJLQD{Ith p

Efww,p[(. W - VoS

https://bramas.fr

Cé C@_;ﬂ CQ-(—]_ o

we = PlG)= Pla.)-Plas,)-

~
- BA A s W AT o %
i 4 ¥ s 0 / “ 5 S S . : PR
N S vy =T o K _ i O 3 Sl g)
B . e < PRSP [P . § o= el - » Ca
R ST THAETNET T s ' | E o Vo
. 2 R c 3 -~ ‘1: Y . [P 4
o] Loy H H B ; | ! > O i - s
S s . ! s - B . o) e - ."\ - L
N / y : . ¢ g - | ~ d 3 \ v 4 I
D \ H H N L 4 =) o - @ o
{ -y - s . - e, A% - a : R @, Ty L L I
* Q “Q‘ﬁ ‘-‘:11 . ST Y) 2 - . 2 TN et > = " id o s A - 2
A
. (O{i 7
Q ~

44

Mobile Robots

WQW(/ ¥ A /(’;{QL 7
Coodinate Syshom Tnvanin-b Prob be .
E=C. . ¢, ¢, ... ¢, (C

pJLQD{IQmL p

EKOVVV\/Z\f pa\H?/w\ Waﬁ‘w ,

https://bramas.fr

45

Mobile Robots

t= G C.

pJLQD{IQmL

E eoum e

https://bramas.fr

: = > <,
. q".-w" -l b "_4*~ 4 = B, .
J_z::.‘f..:,, L TR g v

Caoftclimoi(gagjw 1—"”0"'“0”“/’ PJZ,o[)«& 14

Co Co G G Gl

S does) de poud - o Me/
C@maéf‘mwj{ g/a,olw\

pa\H?/w\ Wa\hw ,

:,_’ I | | =, R k . L. o .
o - o S P O R R I Sy T T e
\/\/ Q\m’ /D -

46

https://bramas.fr

Mobile Robots

Efewjf“b"\ Pﬂ_ogﬁeywxj

ﬂﬁﬁﬁﬁa[)(‘ljfc& PJLOA«ZZW\I
Caoflc[/‘moré(Sgs}w Invmf‘w/’ PJLol)ZK g

47

https://bramas.fr

Mobile Robots

E?‘QC,RJ’(‘(W\ PMLZOW\S

P\e,oucja[;[b‘f(& Er ok le s
QodJr'ma[(Sgg}w In uwu‘ow/’ PJLo[)«Zz S
T—e/l/m:‘r\a‘fr‘ag p/wévz/m 5}

48

https://bramas.fr

Mobile Robots

49

Mobile Robots

Q Jlo[:»vls

(Sowvxé cuuU

https://bramas.fr

LAT
N

-

i SYNC & SSyme
i svne & SSyne
fl SN = STyne
i SN = STyne

50

https://bramas.fr

Conclusion

*/7/9«/%%_,

Lamo(/zc_a,oa_,

1€

51

https://bramas.fr

Conclusion

Thank you!

53

https://bramas.fr

More details on the results

54

https://bramas.fr

RANT FSWC ¢ I WC

95

https://bramas.fr

i

ASYNC < D ywve

o > e

56

https://bramas.fr

i

ASYNC < D ywve

o >

57

https://bramas.fr

1 RSYNC <« S ymve

T

58

https://bramas.fr

59

