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Motivation

Paper: “Reaching Consensus in the Presence of Contention-Related Crash Failures”
by Anais Durand, Michel Raynal & Gadi Taubenfeld, SSS 2022
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Motivation

Paper: “Reaching Consensus in the Presence of Contention-Related Crash Failures”
by Anais Durand, Michel Raynal & Gadi Taubenfeld, SSS 2022

Definition: A-constrained crash failures are crash faults that can
occur only before A\ processes have started their execution.
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Motivation

Paper: “Reaching Consensus in the Presence of Contention-Related Crash Failures”
by Anais Durand, Michel Raynal & Gadi Taubenfeld, SSS 2022

Definition: A-constrained crash failures are crash faults that can
occur only before A\ processes have started their execution.

Result:
Algorithm solving consensus tolerating up to £ A-constrained
crashes, when A\ = n — k, using objects with consensus number £

Consensus number of an object O is the maximal number of processes for which consensus can be
solved despite any number of process crashes (occurring at any time) with any number of objects O
and read/write registers
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Motivation
Paper: “Reaching Consensus in the Presence of Contention-Related Crash Failures”

by Anais Durand, Michel Raynal & Gadi Taubenfeld, SSS 2022

Definition: A-constrained crash failures are crash faults that can
occur only before A\ processes have started their execution.

Result:
simple Algorithm solving consensus tolerating up to £ A-constrained

crashes, when A\ = n — k, using-objectswith-consensusnumberk

Consensus number of an object O is the maximal number of processes for which consensus can be
solved despite any number of process crashes (occurring at any time) with any number of objects O
and read/write registers
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray:
TrustedArray:
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray:
TrustedArray:

o Say “hello” (write 1 in my “hello” register)
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T BT PP In—3>n—Ek
TrustedArray:

o Say “hello” (write 1 in my “hello” register)
« Wait to see at least n — k “hello”
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T BT PP In—3>n—Ek
TrustedArray:

o Say “hello” (write 1 in my “hello” register)
« Wait to see at least n — k “hello”

e I know that no more crash can occur
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T BT PP In—3>n—Ek
TrustedArray:

o Say “hello” (write 1 in my “hello” register)

« Wait to see at least n — k “hello”

« I know that no more crash can occur

 Say “Tam correct” (write 1 in my “trusted” register)
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T BT PP In—3>n—Ek
TrustedArray: [ ]

o Say “hello” (write 1 in my “hello” register)

« Wait to see at least n — k “hello”

« I know that no more crash can occur

 Say “Tam correct” (write 1 in my “trusted” register)
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T PP n—3>n—Ek
TrustedArray: B

o Say “hello” (write 1 in my “hello” register)

« Wait to see at least n — k “hello”

« I know that no more crash can occur

 Say “Tam correct” (write 1 in my “trusted” register)
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How ?
Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T PP n—3>n—Ek
TrustedArray: B

o Say “hello” (write 1 in my “hello” register)
Wait to see at least n — k “hello”
I know that no more crash can occur

Say “Tam correct” (write 1 in my “trusted” register)

Now the TrustedArray is an eventual perfect failure detector’

! Eventually: every process that crashes is permanently suspected and correct processes are not suspected
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How ?

Let 0 < k < n, we want to solve the consensus with at most k& (n — k)-constrained crashes.

Example withn = 10 at most k = 4 crashes

HelloArray: T PP n—3>n—Ek
TrustedArray: B

o Say “hello” (write 1 in my “hello” register)
Wait to see at least n — k “hello”
I know that no more crash can occur

Say “Tam correct” (write 1 in my “trusted” register)

Now the TrustedArray is an eventual perfect failure detector’

Execute Lo & Hadzilacos consensus algorithm with it

! Eventually: every process that crashes is permanently suspected and correct processes are not suspected
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A general algorithm
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A general algorithm

If the system is eventually quiescent
(I eventually know when no more crash can occur),
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A general algorithm

If the system is eventually quiescent
(I eventually know when no more crash can occur),
we can solve consensus:
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A general algorithm

If the system is eventually quiescent

(I eventually know when no more crash can occur),

we can solve consensus:

« When I know that no more crash can occur

« Write true in my “trusted” register

« Now the TrustedArray is an eventual perfect failure detector
« Execute Lo & Hadzilacos consensus algorithm with it
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A general algorithm

If the system is eventually quiescent

(I eventually know when no more crash can occur),

we can solve consensus:

« When I know that no more crash can occur

« Write true in my “trusted” register

« Now the TrustedArray is an eventual perfect failure detector
« Execute Lo & Hadzilacos consensus algorithm with it

This could be applied to other kind of failures, not only contention-related.
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A general algorithm

If the system is eventually quiescent

(I eventually know when no more crash can occur),

we can solve consensus:

« When I know that no more crash can occur

« Write true in my “trusted” register

« Now the TrustedArray is an eventual perfect failure detector
« Execute Lo & Hadzilacos consensus algorithm with it

This could be applied to other kind of failures, not only contention-related.

Thank you!
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