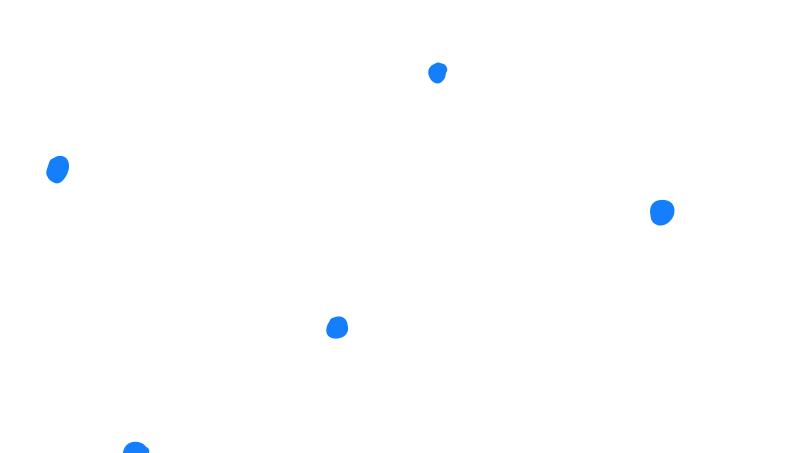
The agreement power of disagreement Quentin Bramas, Anissa Lamani, and Sébastien Tixeuil

Strasbourg University, Strasbourg University, and Sorbonne University

Quentin Bramas < <u>bramas@unistra.fr</u> > – SSS 2021

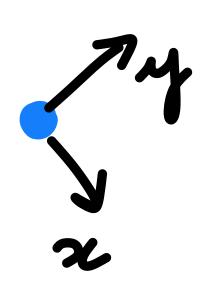
Mobile Autonomous Robots

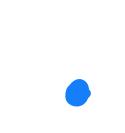
- Anonymous
- Uniform
- Disoriented
- Silent
- Oblivious



- Look
- Compute
- Move

- Fully-Synchronous
- Semi-Synchronous

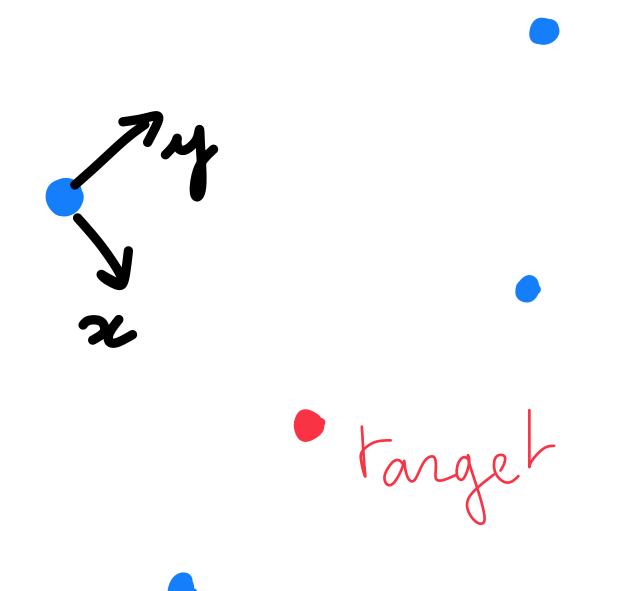




Execution Cycle

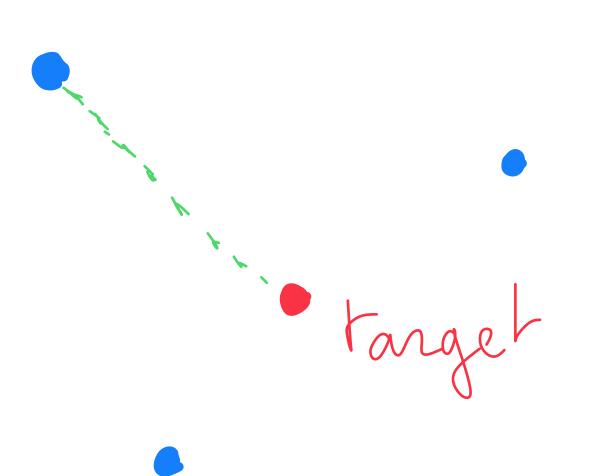
- Look
- Compute
- Move

- Fully-Synchronous
- Semi-Synchronous



- Look
- Compute
- Move

- Fully-Synchronous
- Semi-Synchronous



Execution Cycle

- Look
- Compute
- Move

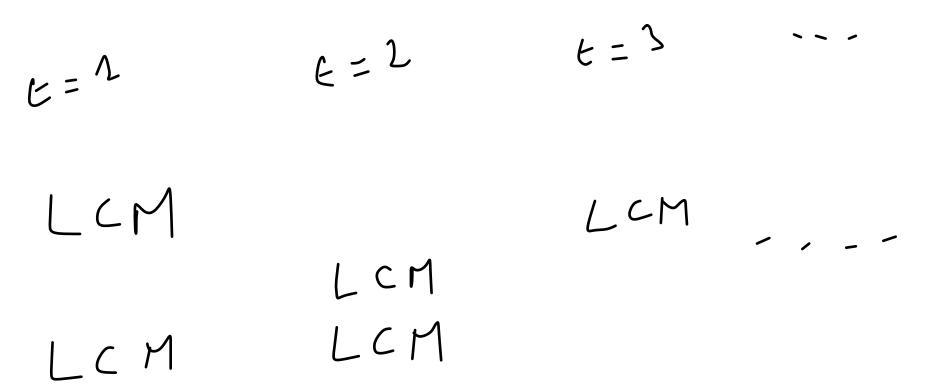
- Fully-Synchronous
- Robot 1 Robot 2 Robot 3
- Semi-Synchronous

 $E=\Lambda$ E=2 E=3 ... LCM LCM LCM ... LCM LCM LCM LCM

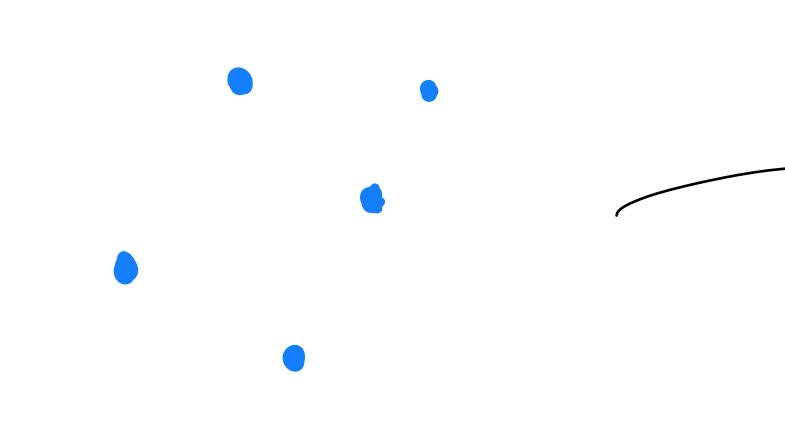
Execution Cycle

- Look
- Compute
- Move

- Fully-Synchronous
- Robot 1 Robot 2 Robot 3
- Semi-Synchronous



The Fundamental Problem of Gathering



SSYNC:

SSYNC:

Unsolvable in SSYNC without additional assumption [Suzuki & Yamashita 1999]

SSYNC:

Unsolvable in SSYNC without additional assumption [Suzuki & Yamashita 1999] **Solvable** in SSYNC when robots **agree** on a single axis [Bramas, Lamani, Tixeuil 2021]

SSYNC:

Unsolvable in SSYNC without additional assumption [Suzuki & Yamashita 1999] **Solvable** in SSYNC when robots **agree** on a single axis [Bramas, Lamani, Tixeuil 2021] **Solvable** in SSYNC when robots **disagree** on the unit distance [This work]

SSYNC:

Unsolvable in SSYNC without additional assumption [Suzuki & Yamashita 1999] **Solvable** in SSYNC when robots **agree** on a single axis [Bramas, Lamani, Tixeuil 2021] **Solvable** in SSYNC when robots **disagree** on the unit distance [This work]

FSYNC

SSYNC:

Unsolvable in SSYNC without additional assumption [Suzuki & Yamashita 1999] **Solvable** in SSYNC when robots **agree** on a single axis [Bramas, Lamani, Tixeuil 2021] **Solvable** in SSYNC when robots **disagree** on the unit distance [This work]

FSYNC

Solvable in FSYNC (Move to the middle)

The Impossibility of Rendezvous [Suzuki & Yamashita 99]

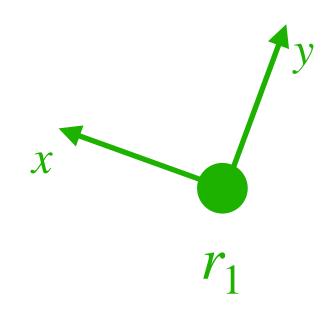
Assume an algorithm exists

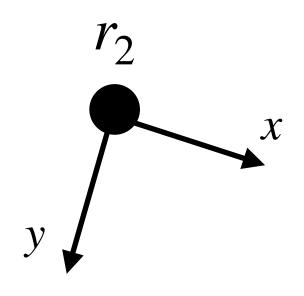
Assume an algorithm exists

There must exists a rule in the algorithm saying: « in view V, stay idle »

Assume an algorithm exists

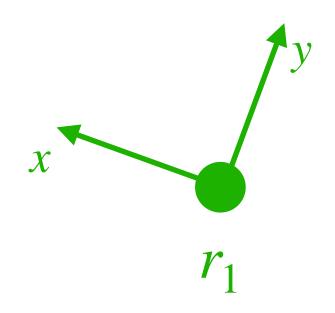
There must exists a rule in the algorithm saying: « in view V, stay idle »



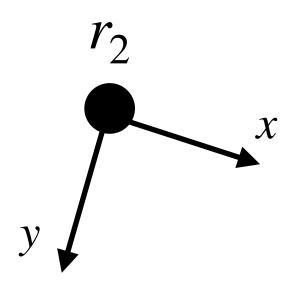


Assume an algorithm exists

There must exists a rule in the algorithm saying: « in view V, stay idle »

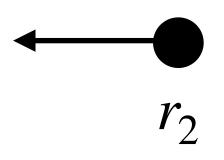


Both robots have view V, and stay Idle.

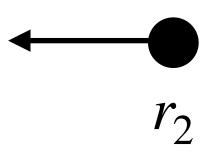


Rendezvous Robots with different unit-distance

*r*₁

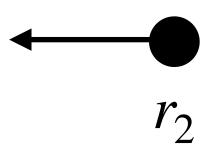


We have two robots r_1 and r_2 having unit distance *unit*₁ and *unit*₂



We have two robots r_1 and r_2 having unit distance *unit*₁ and *unit*₂

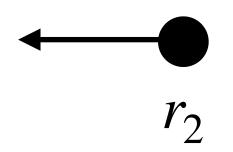
With $\frac{unit_1}{unit_2} = \rho > 1$ (indeed, with $\rho = 1$ the problem is unsolvable)



We have two robots r_1 and r_2 having unit distance *unit*₁ and *unit*₂

With $\frac{unit_1}{unit_2} = \rho > 1$ (indeed, with $\rho = 1$ the problem is unsolvable)

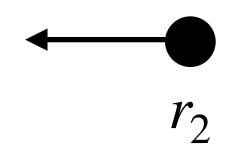
This implies that robots see the distance between them differently



We have two robots r_1 and r_2 having unit distance *unit*₁ and *unit*₂

With $\frac{unit_1}{unit_2} = \rho > 1$ (indeed, with $\rho = 1$ the problem is unsolvable)

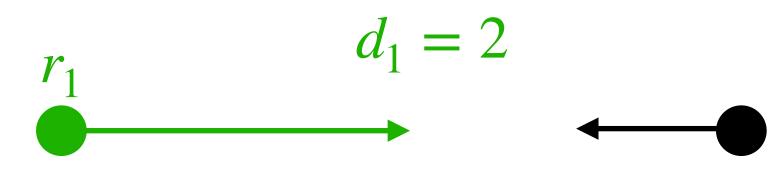
This implies that robots see the distance between them differently r_1 sees distance d_1 and r_2 sees distance d_2 with $d_2 = \rho d_1$

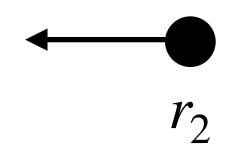


We have two robots r_1 and r_2 having unit distance unit₁ and unit₂

With $\frac{unit_1}{unit_2} = \rho > 1$ (indeed, with $\rho = 1$ the problem is unsolvable)

This implies that robots see the distance between them differently r_1 sees distance d_1 and r_2 sees distance d_2 with $d_2 = \rho d_1$

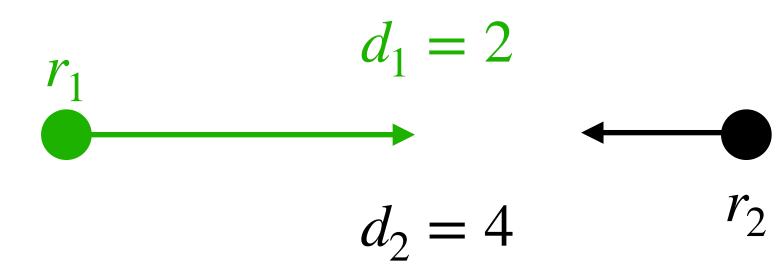


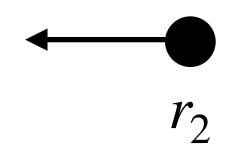


We have two robots r_1 and r_2 having unit distance unit₁ and unit₂

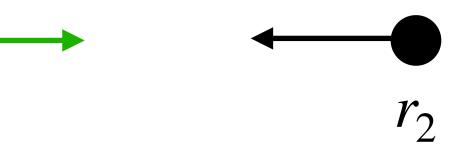
With $\frac{unit_1}{unit_2} = \rho > 1$ (indeed, with $\rho = 1$ the problem is unsolvable)

This implies that robots see the distance between them differently r_1 sees distance d_1 and r_2 sees distance d_2 with $d_2 = \rho d_1$

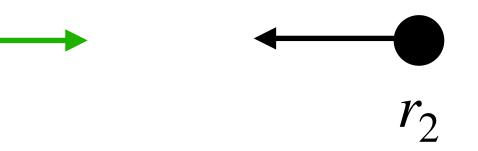




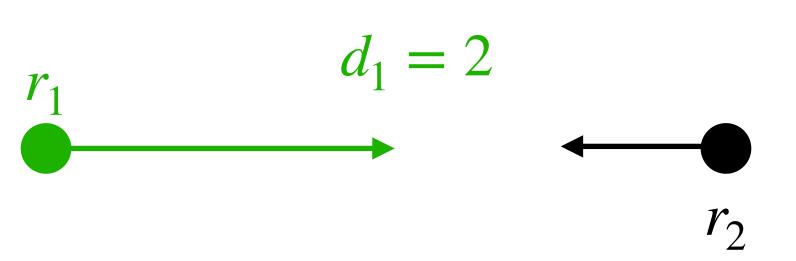
Rendezvous $\rho = 2$



We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

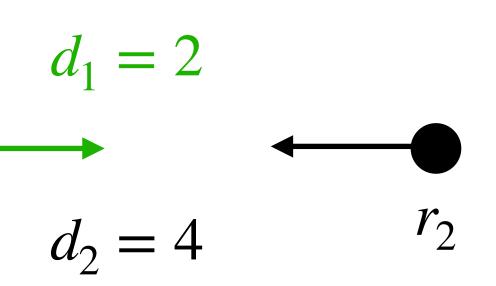


We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$



We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

 r_1



Rendezvous when $\rho = 2$ $l_1 = -1$ $d_2 = 4$ r_2

We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

Rendezvous when $\rho = 2$ $d_1 = 2$ $l_1 = -1$

We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

 $d_2 = 4$ r_2 $l_2 = -2$

Rendezvous when $\rho = 2$ $d_1 = 2$ $l_1 = -1$

We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

Property:

We have
$$l_1 = l_2 + 1$$

 $d_2 = 4$ r_2 $l_2 = -2$

Definition:

We define the level of robot r_i the unique number l_i such that $d_i \in [2^{-l_i}, 2^{-l_i+1})$

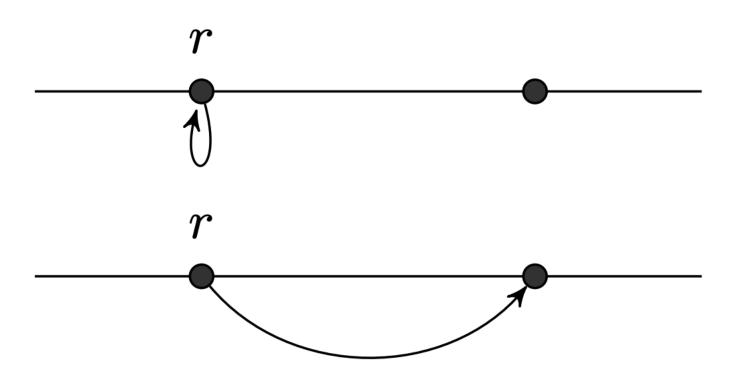
Property:

We have
$$l_1 = l_2 + 1$$

Algo1:

case $l_r \equiv 0 \mod 2$

case $l_r \equiv 1 \mod 2$



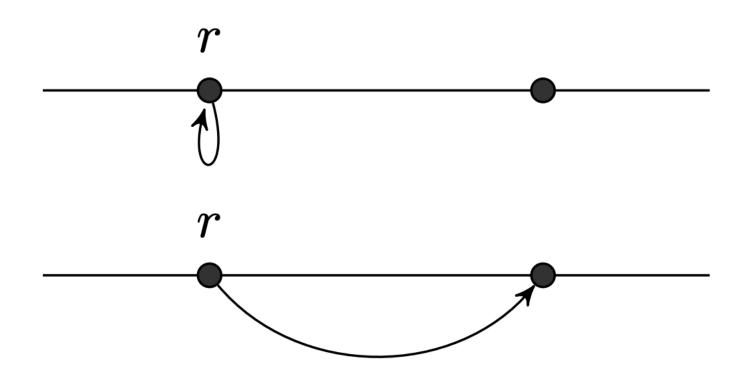
Algo1:

case $l_r \equiv 0 \mod 2$

case $l_r \equiv 1 \mod 2$

Theorem:

Algo 1 solves rendezvous in SSYNC



Algo1:

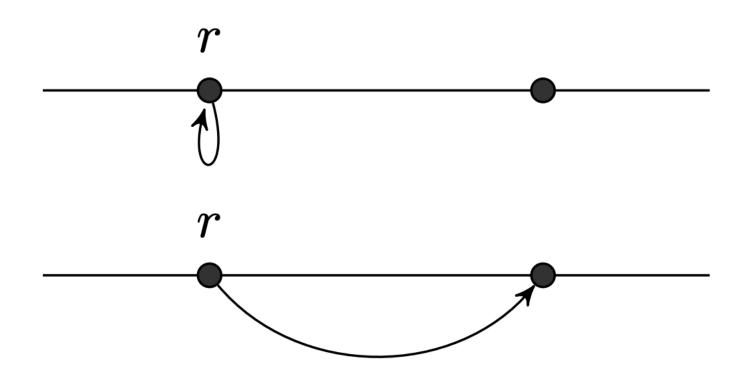
case $l_r \equiv 0 \mod 2$

case $l_r \equiv 1 \mod 2$

Theorem:

Algo 1 solves rendezvous in SSYNC

Proof:



Algo1:

case $l_r \equiv 0 \mod 2$

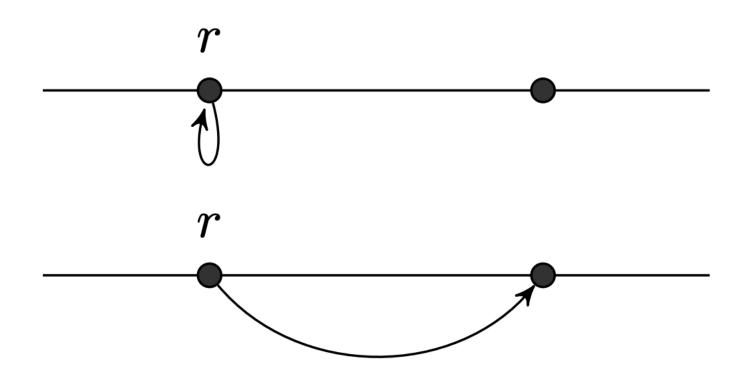
case $l_r \equiv 1 \mod 2$

Theorem:

Algo 1 solves rendezvous in SSYNC

Proof:

One robot moves to the other robot.



Algo1:

case $l_r \equiv 0 \mod 2$

case $l_r \equiv 1 \mod 2$

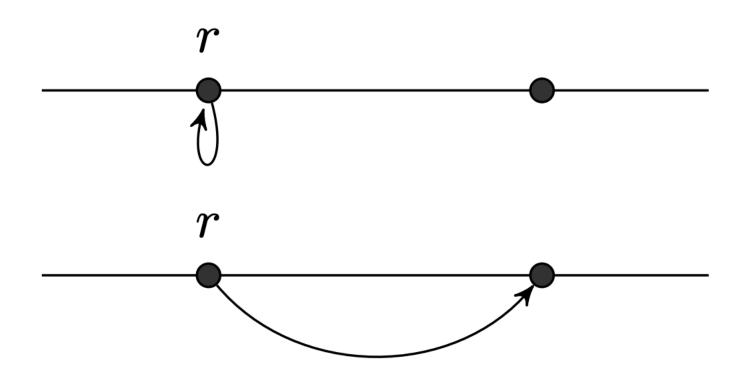
Theorem:

Algo 1 solves rendezvous in SSYNC

Proof:

One robot moves to the other robot.

If it does not reach its target, then the distance between the robots decreases by a fixed amount.



Algo1:

case $l_r \equiv 0 \mod 2$

case $l_r \equiv 1 \mod 2$

Theorem:

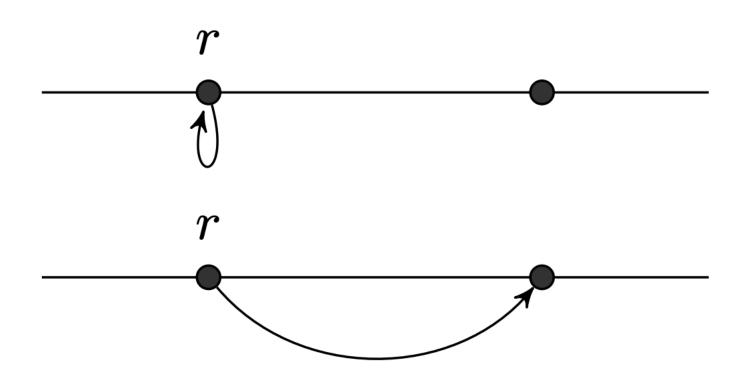
Algo 1 solves rendezvous in SSYNC

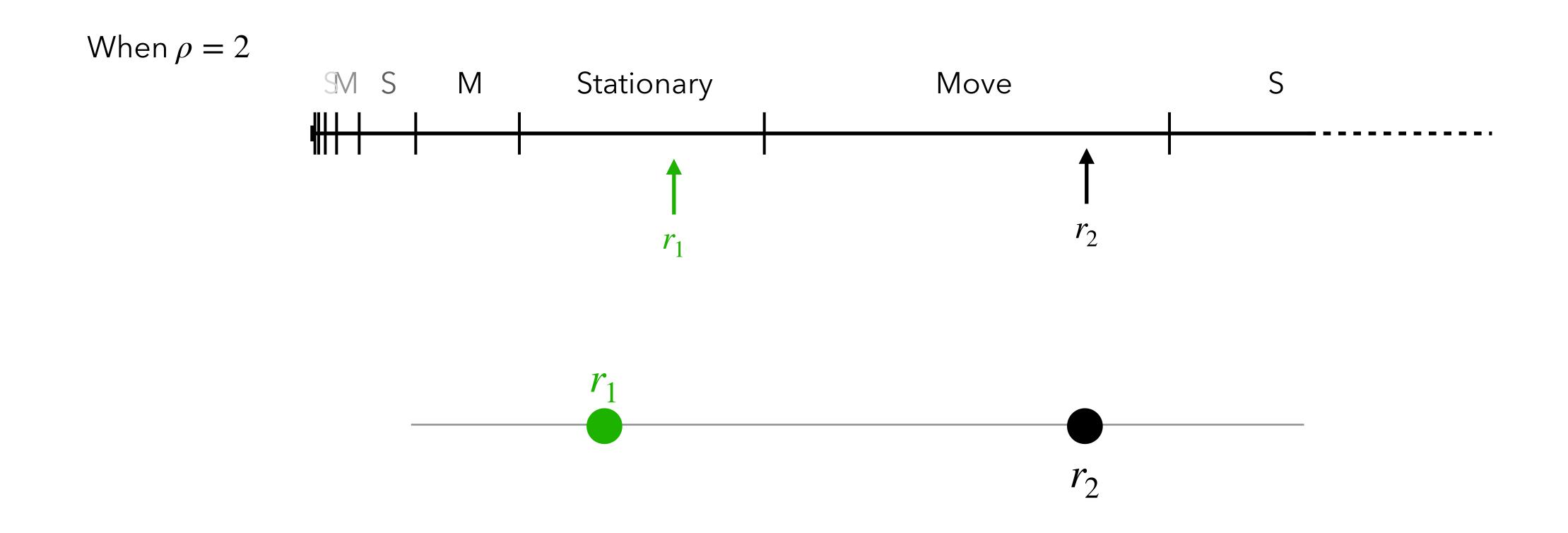
Proof:

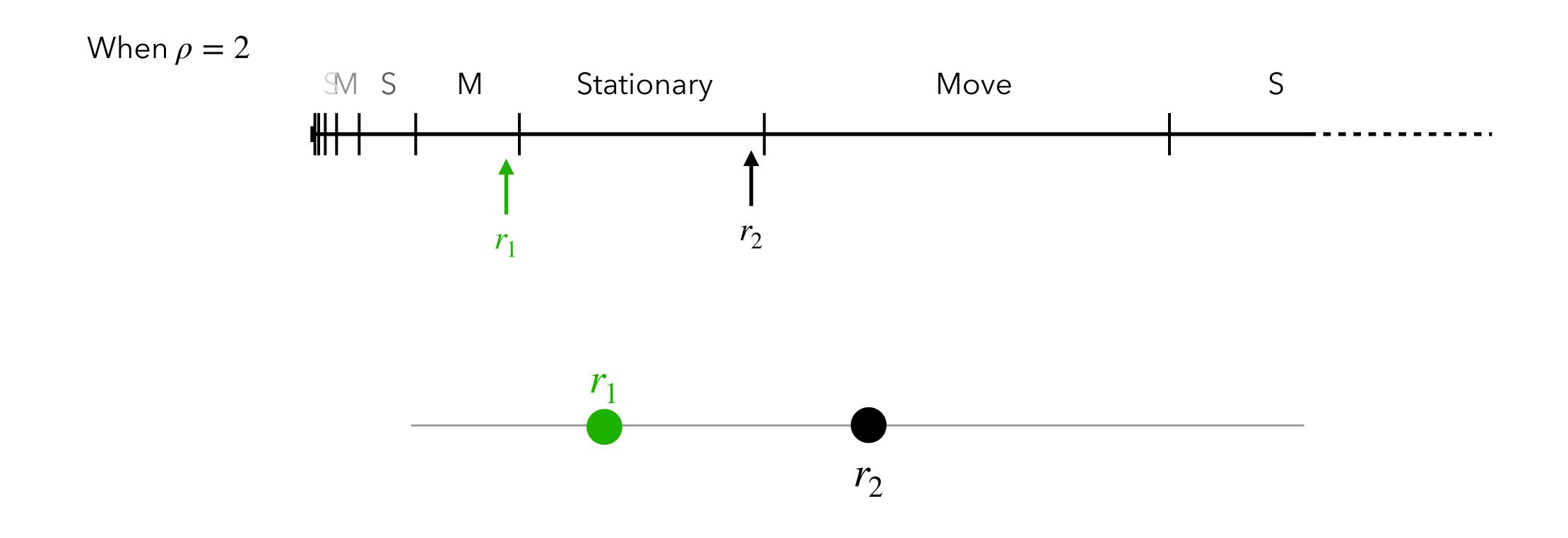
One robot moves to the other robot.

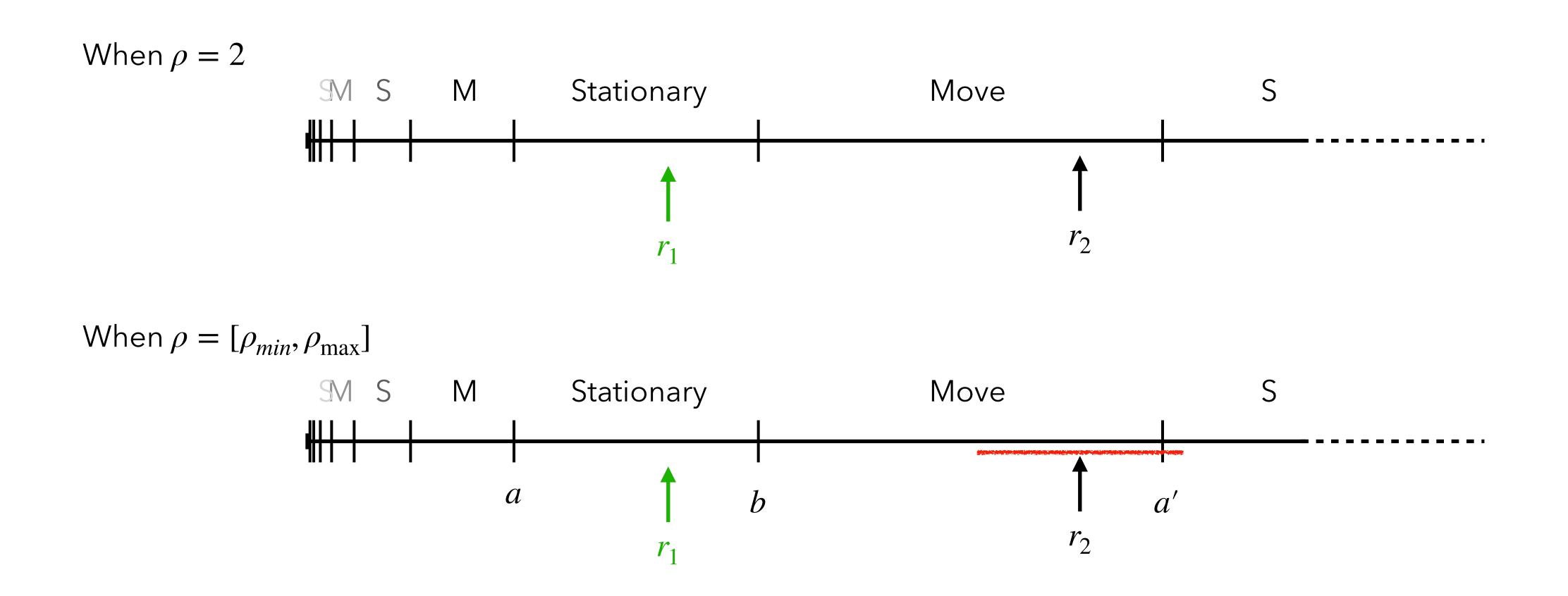
If it does not reach its target, then the distance between the robots decreases by a fixed amount.

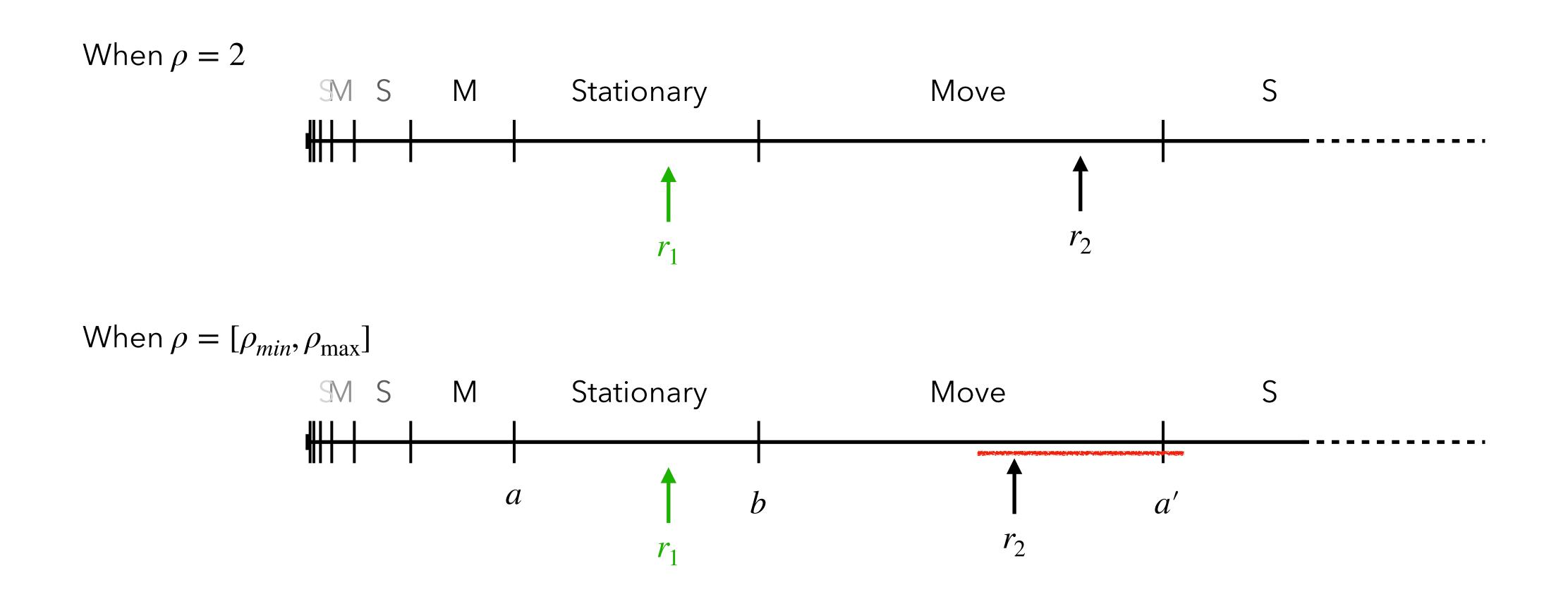
Eventually, the distance between the robots is smaller than δ , hence robots eventually reach their target.

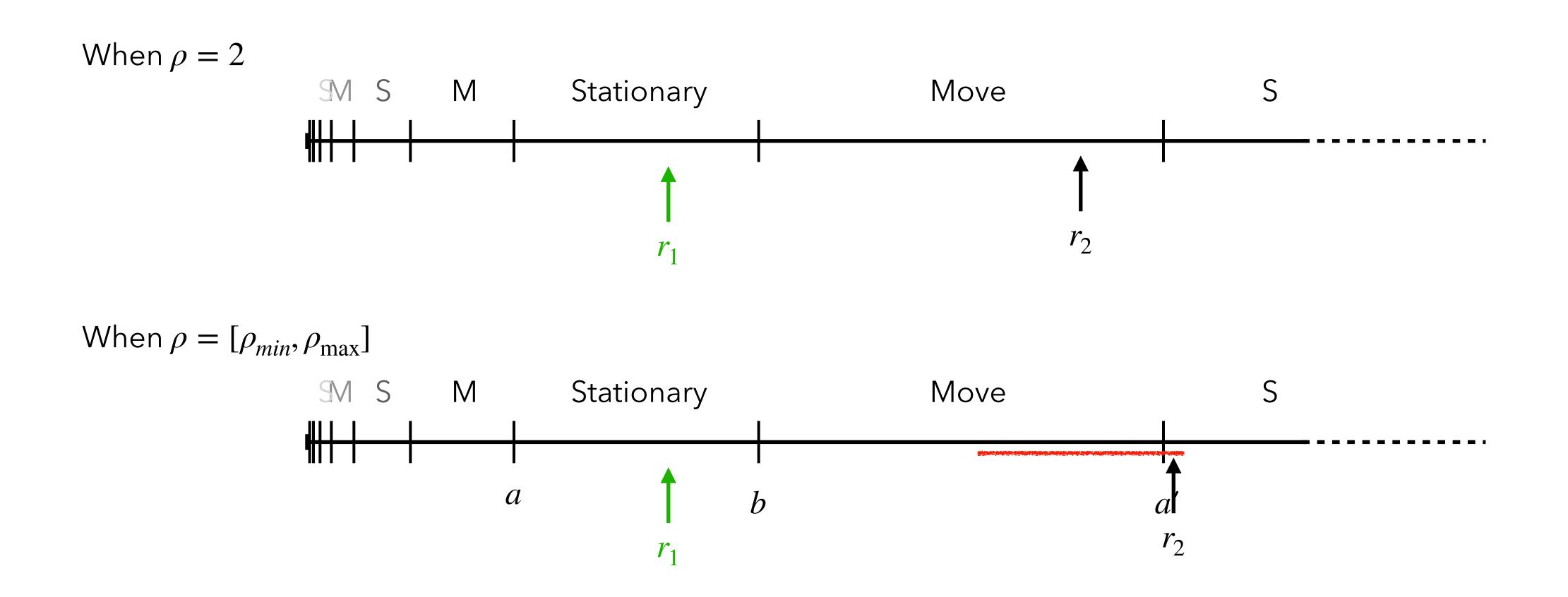


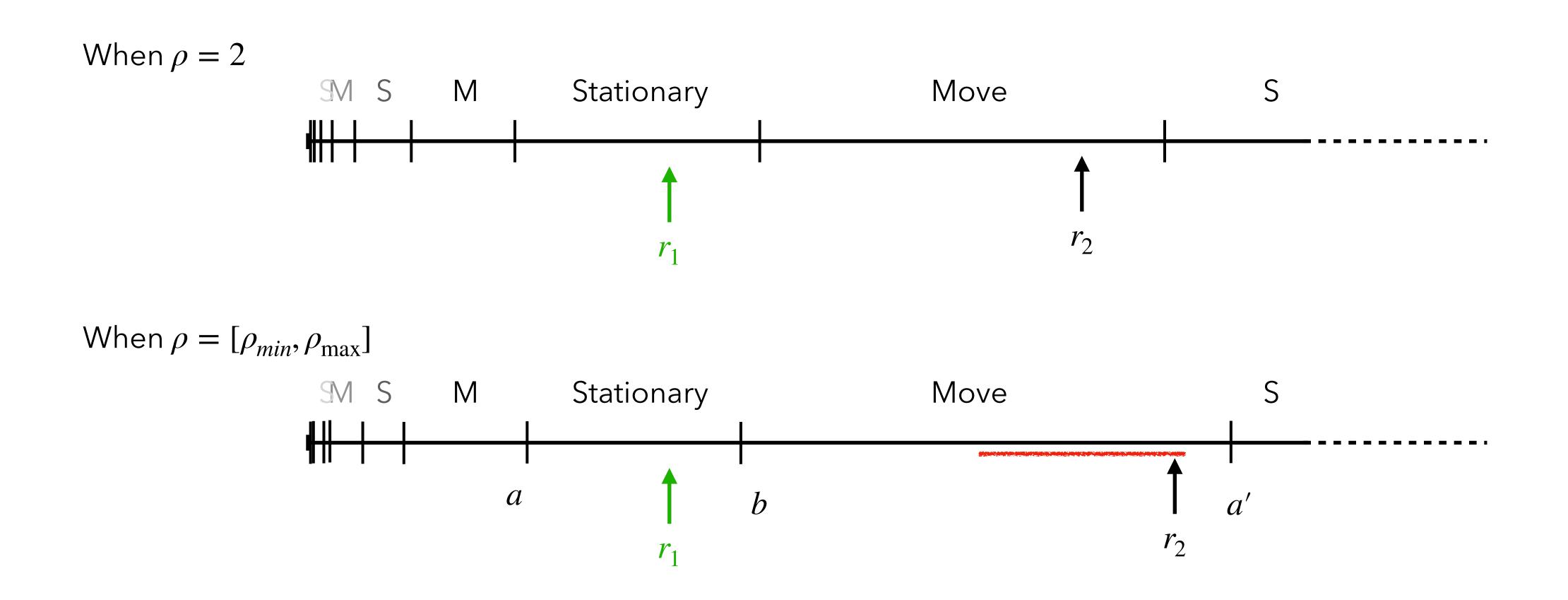


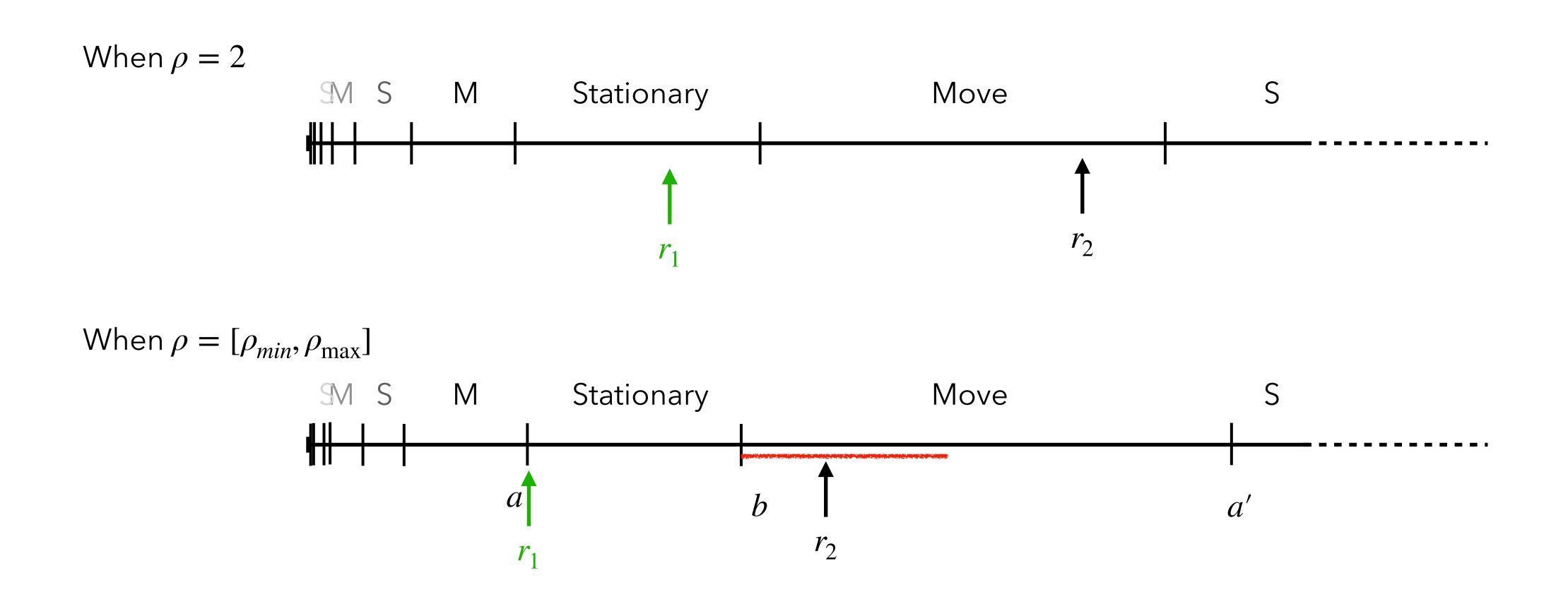


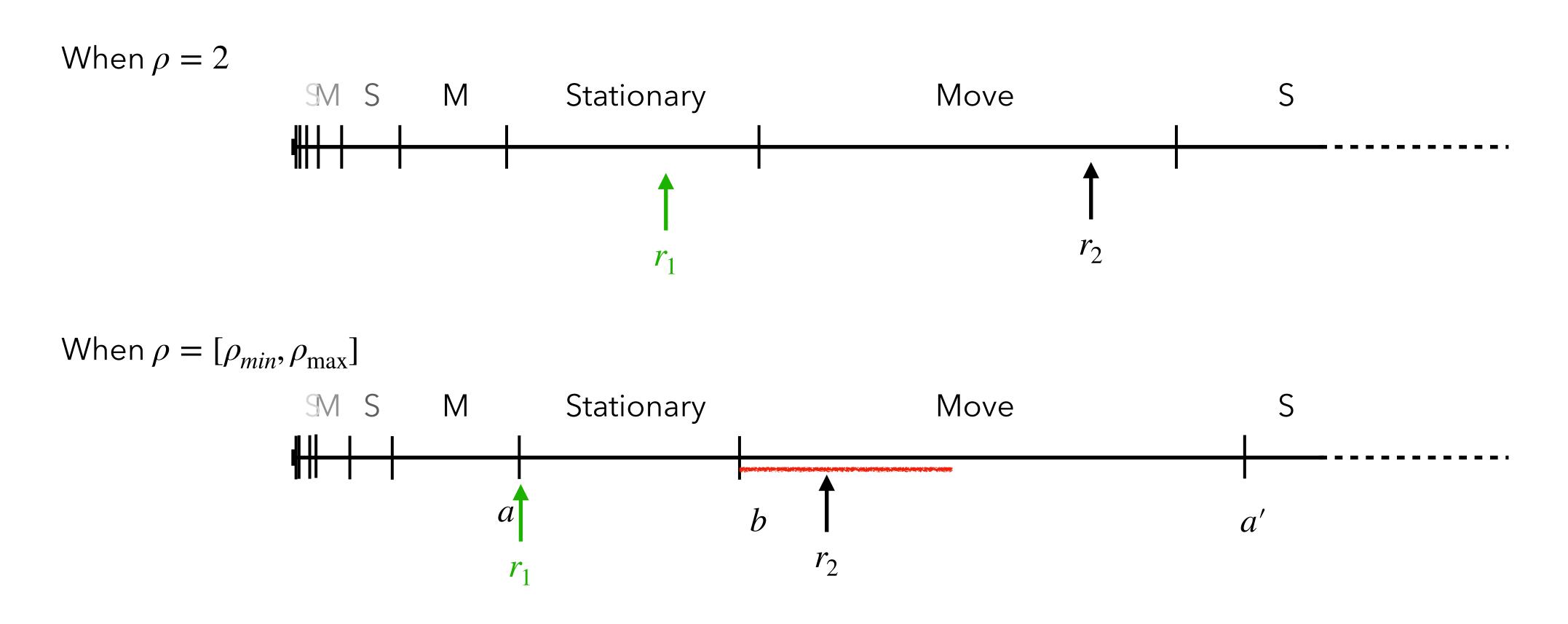




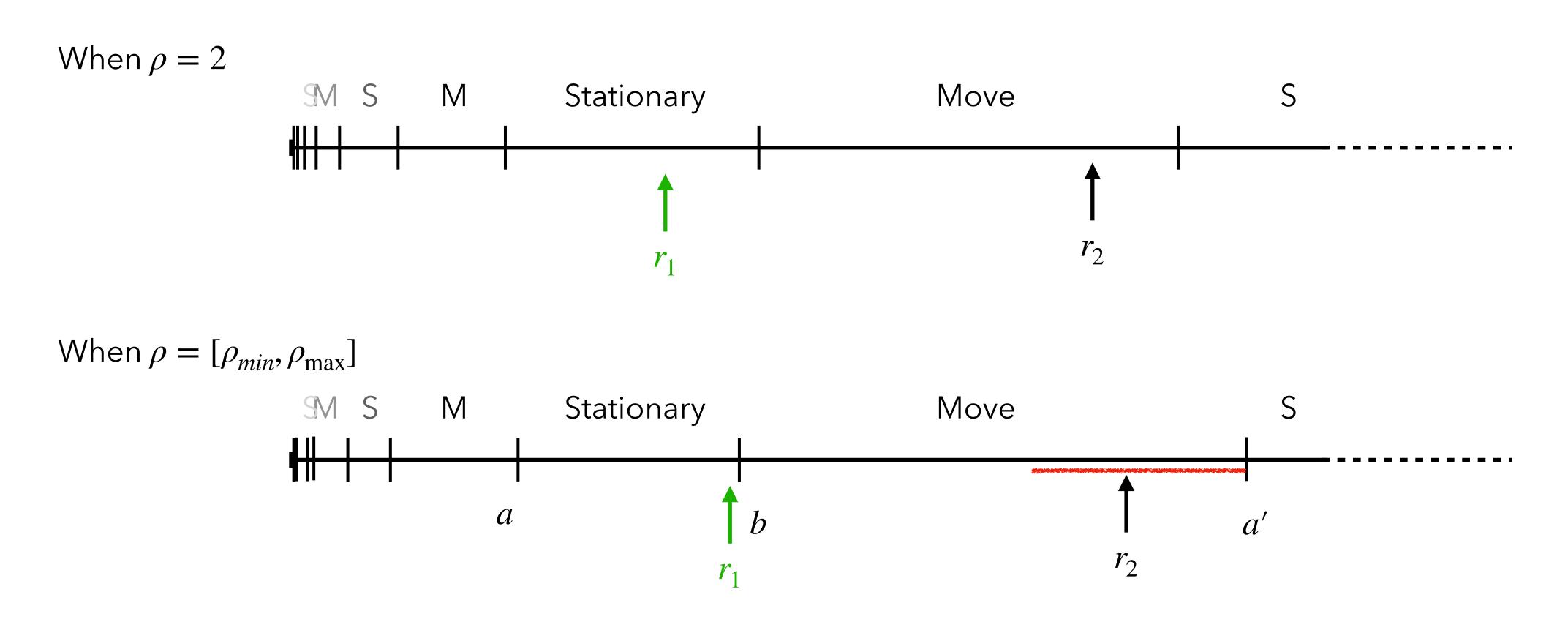




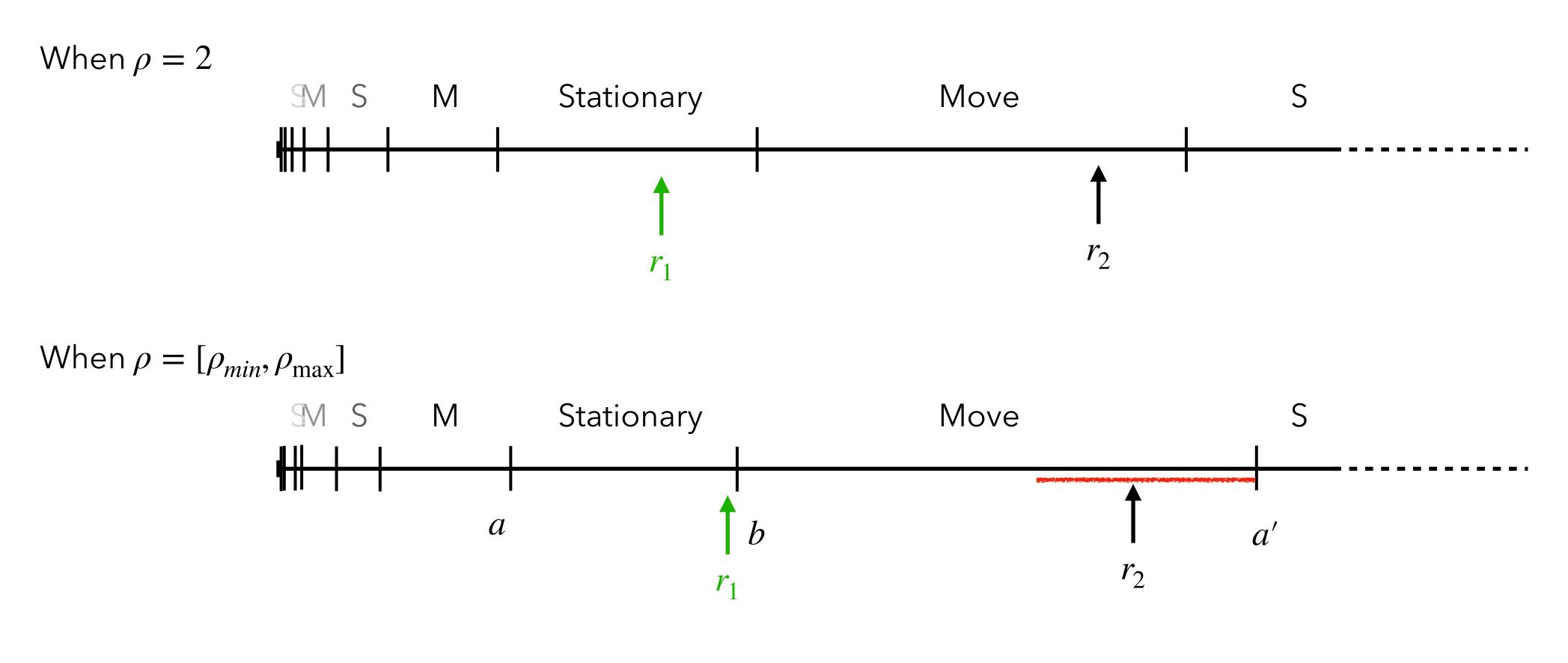




 $b = a \times \rho_{\min}$



 $b = a \times \rho_{\min}$

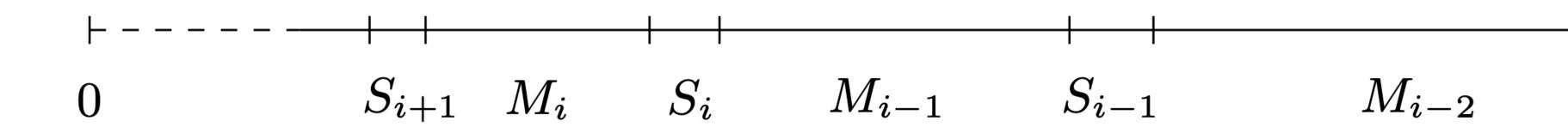


 $b = a \times \rho_{\min}$

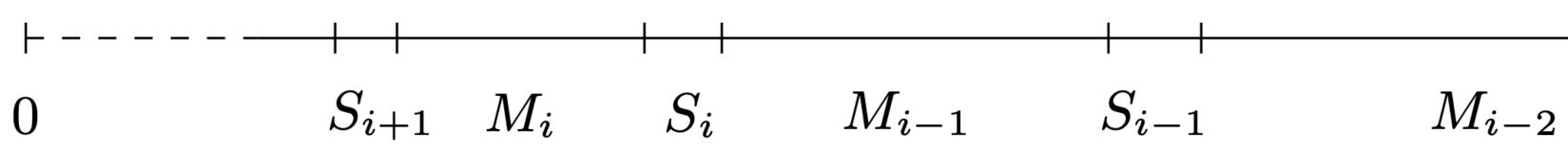
$$a' = b \times \rho_{\max}$$

Rendezvous when $\rho = [\rho_{min}, \rho_{max}]$ **Robots Levels**

 $\forall i \in \mathbb{Z} \qquad S_i = [\rho_{\mathrm{m}}^-]$ $M_i = [\rho]$

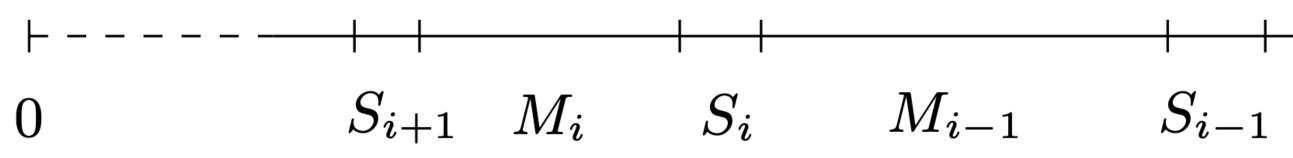


Rendezvous when $\rho = [\rho_{min}, \rho_{max}]$ **Robots Levels**



Lemma 1: if a robot is in S_i then the other robot is in M_i or in M_{i-1}

Rendezvous when $\rho = [\rho_{min}, \rho_{max}]$ **Robots Levels**

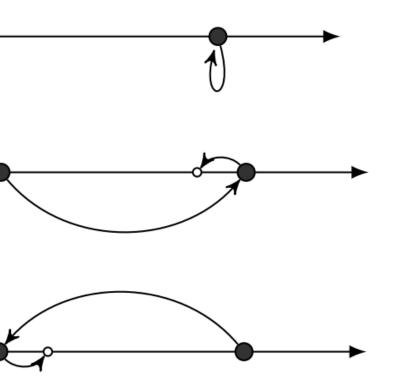


Lemma 1: if a robot is in S_i then the other robot is in M_i or in M_{i-1} Algo2:

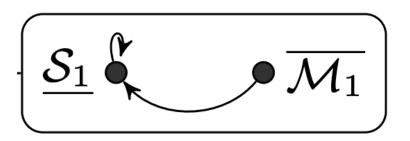
 $d \in \mathcal{S}_0 \cup \mathcal{S}_1$

 $d \in \mathcal{M}_0$ The right robot moves a distance $\mathfrak{s}(d)$

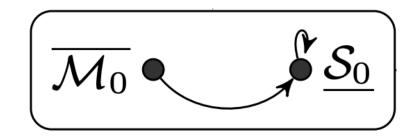
 $d \in M_1$ The left robot moves a distance $\mathfrak{s}(d)$ M_{i-2}



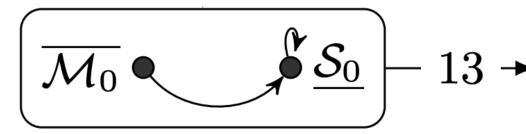
With $\mathfrak{s}(d) \in \mathcal{S}_0$



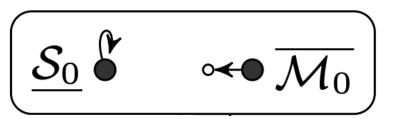
Gathered
$$+ 13 - \underbrace{S_1}_{\bullet} \underbrace{\mathcal{S}_1}_{\mathcal{M}_1}$$

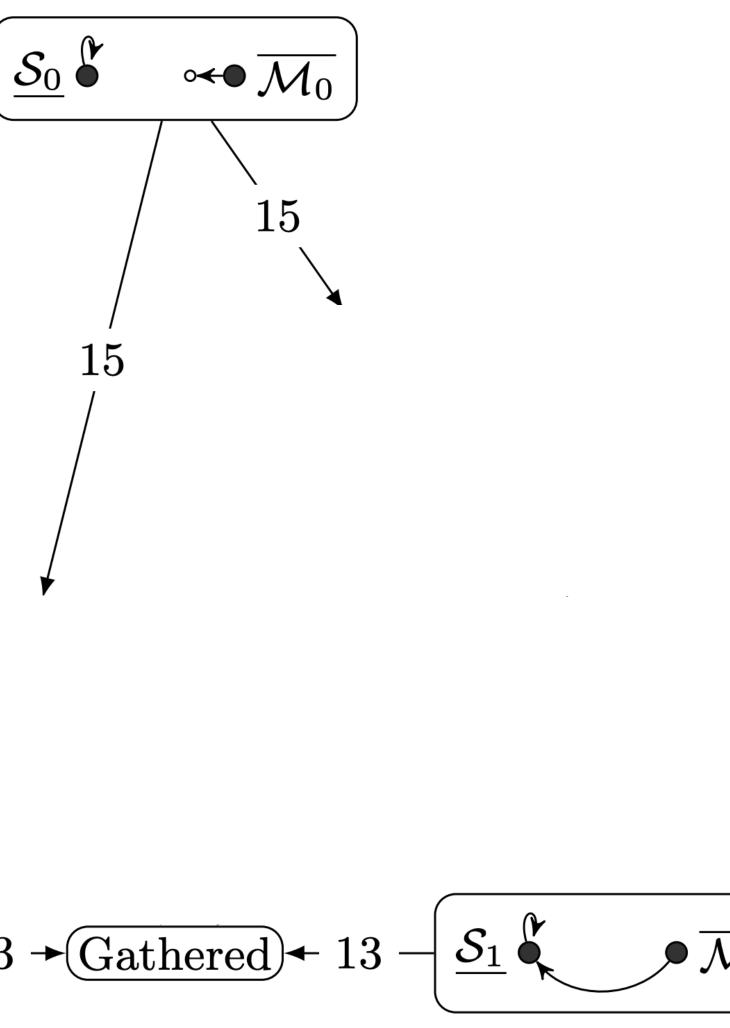


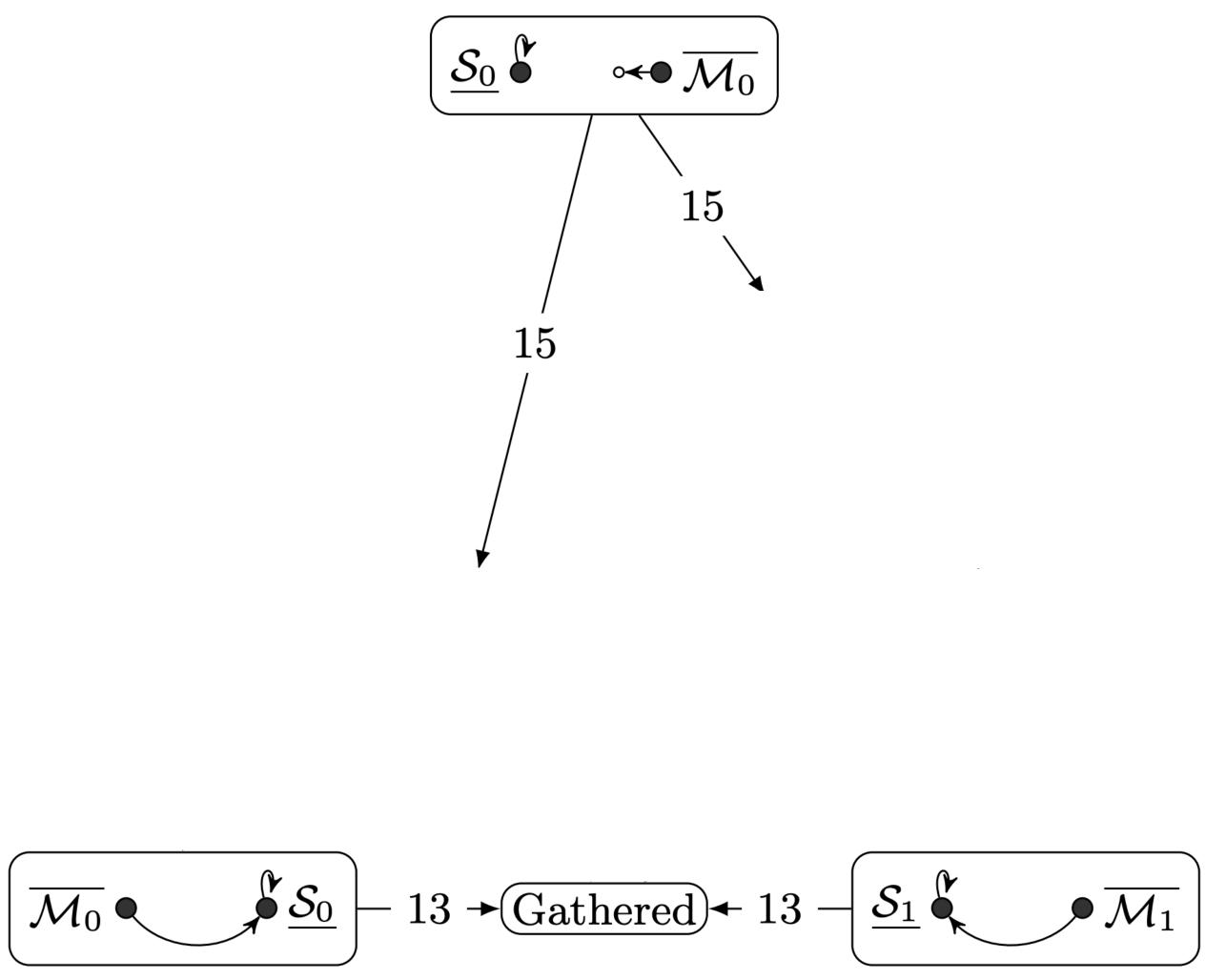
Gathered
$$+ 13 - \underbrace{S_1}_{\bullet} \underbrace{\mathcal{S}_1}_{\mathcal{M}_1}$$



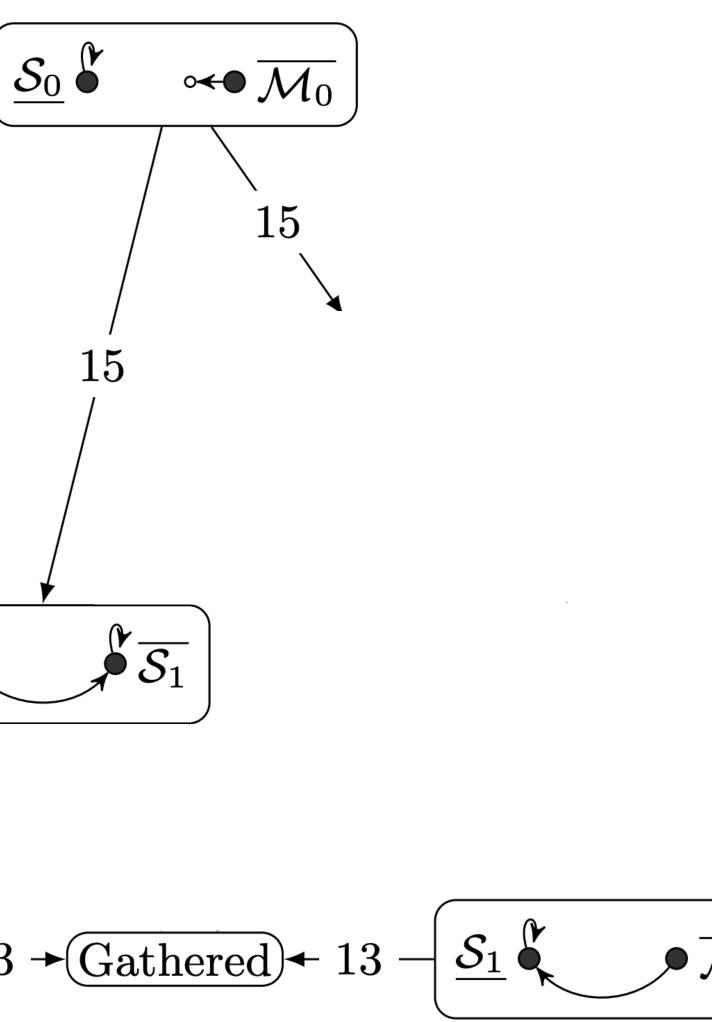
•Gathered • 13 –
$$\underbrace{\mathcal{S}_1}_{\bullet} \bullet \overline{\mathcal{M}_1}$$

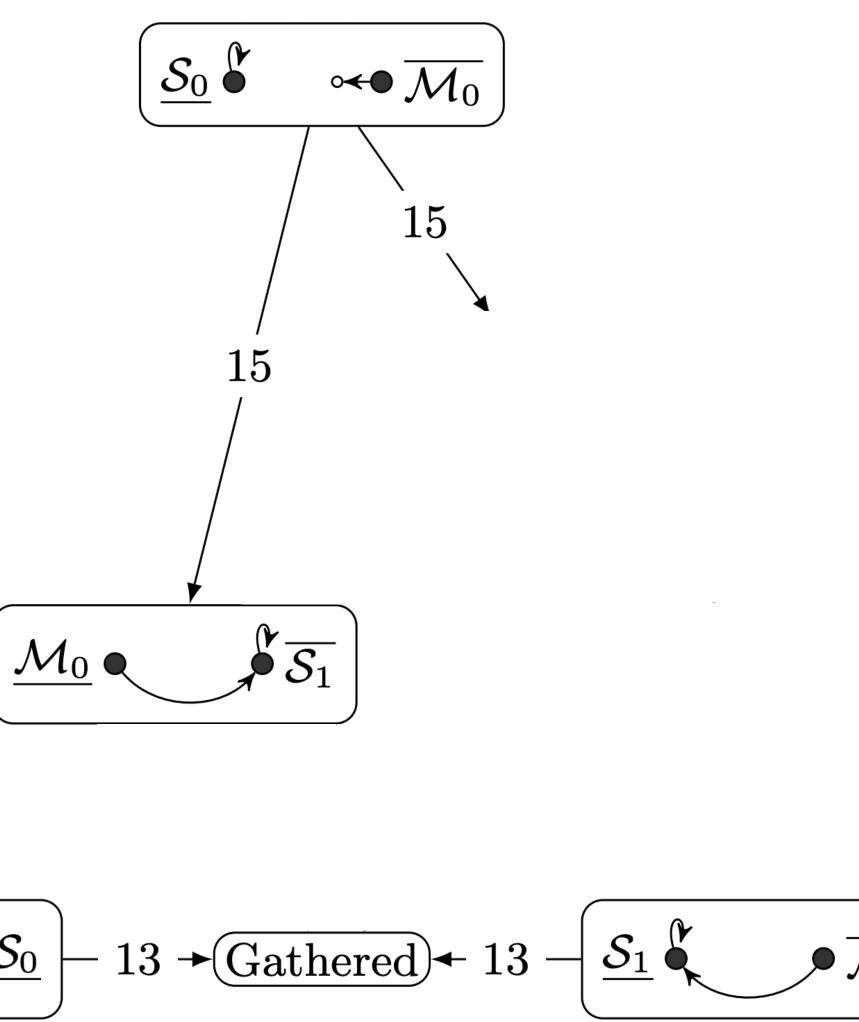


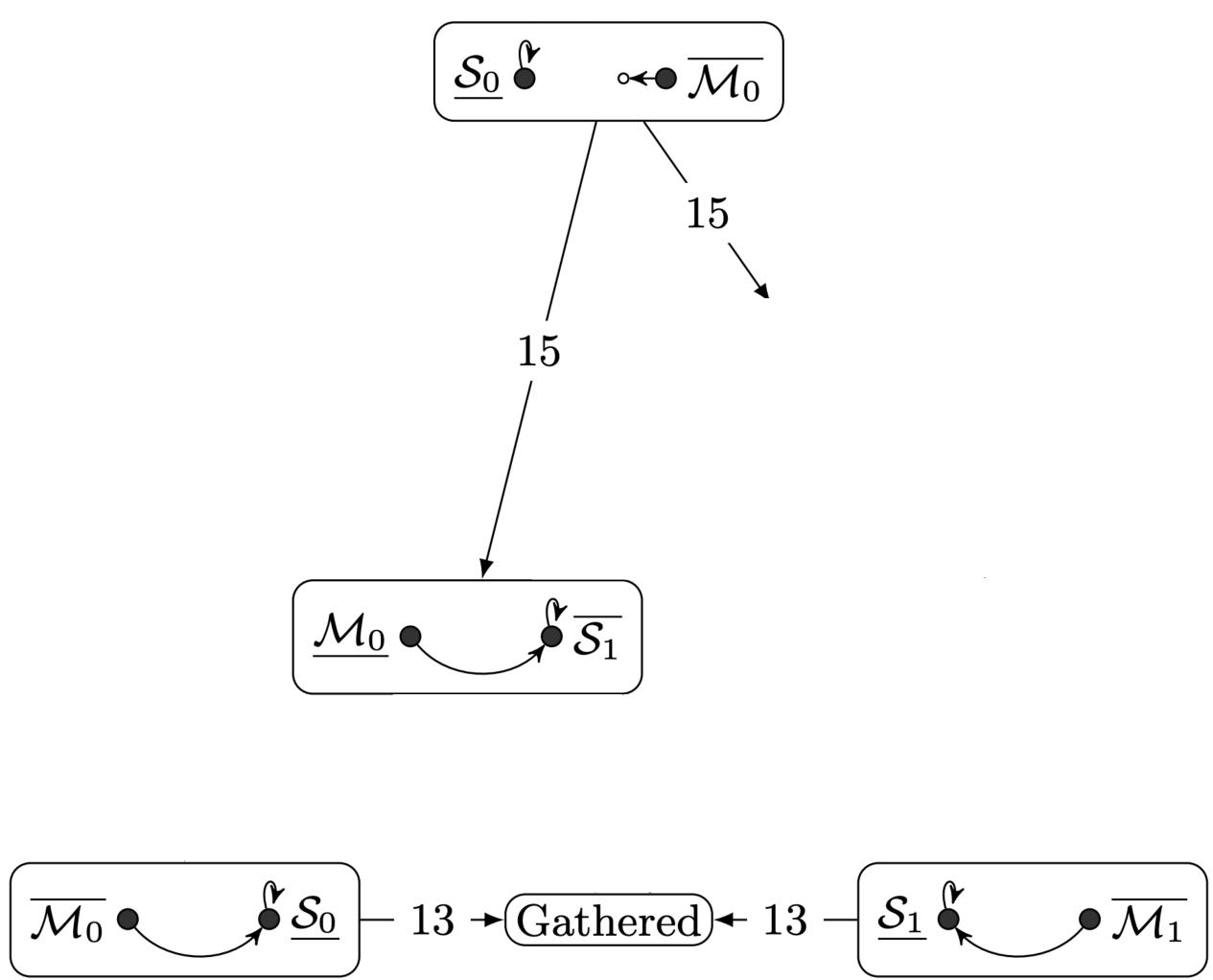




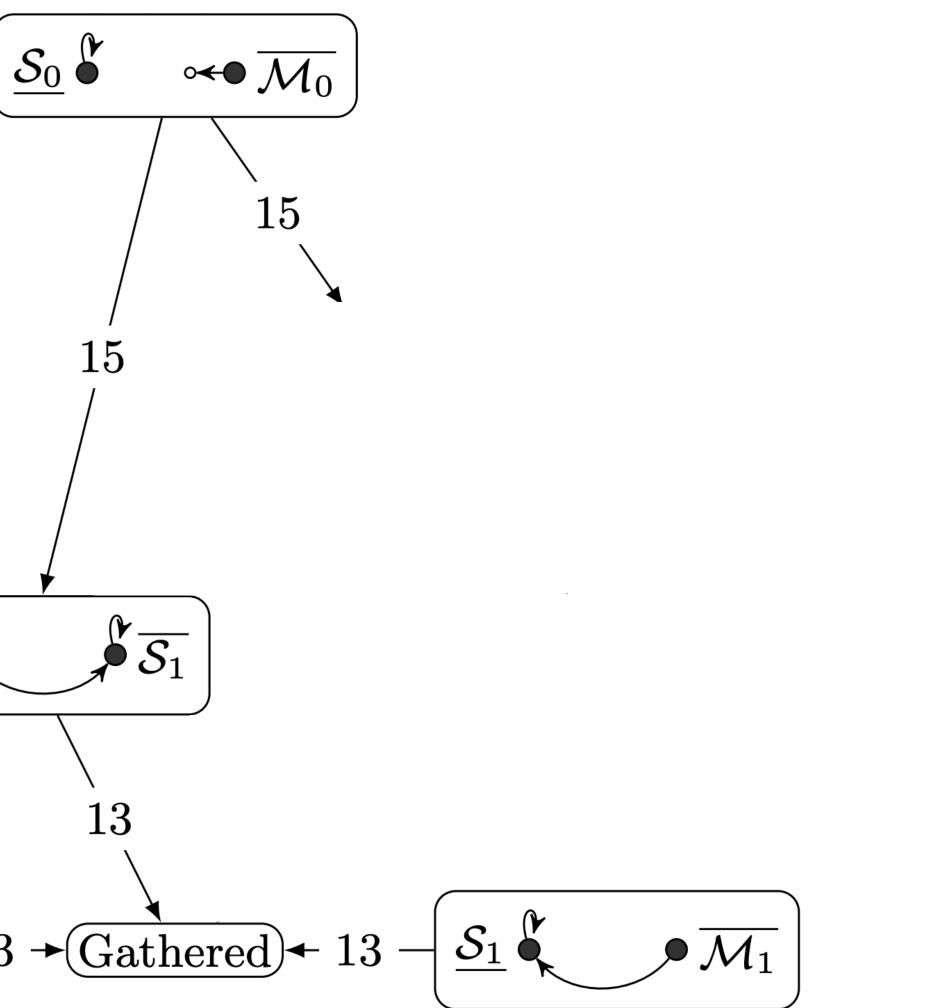
Algo2 execution

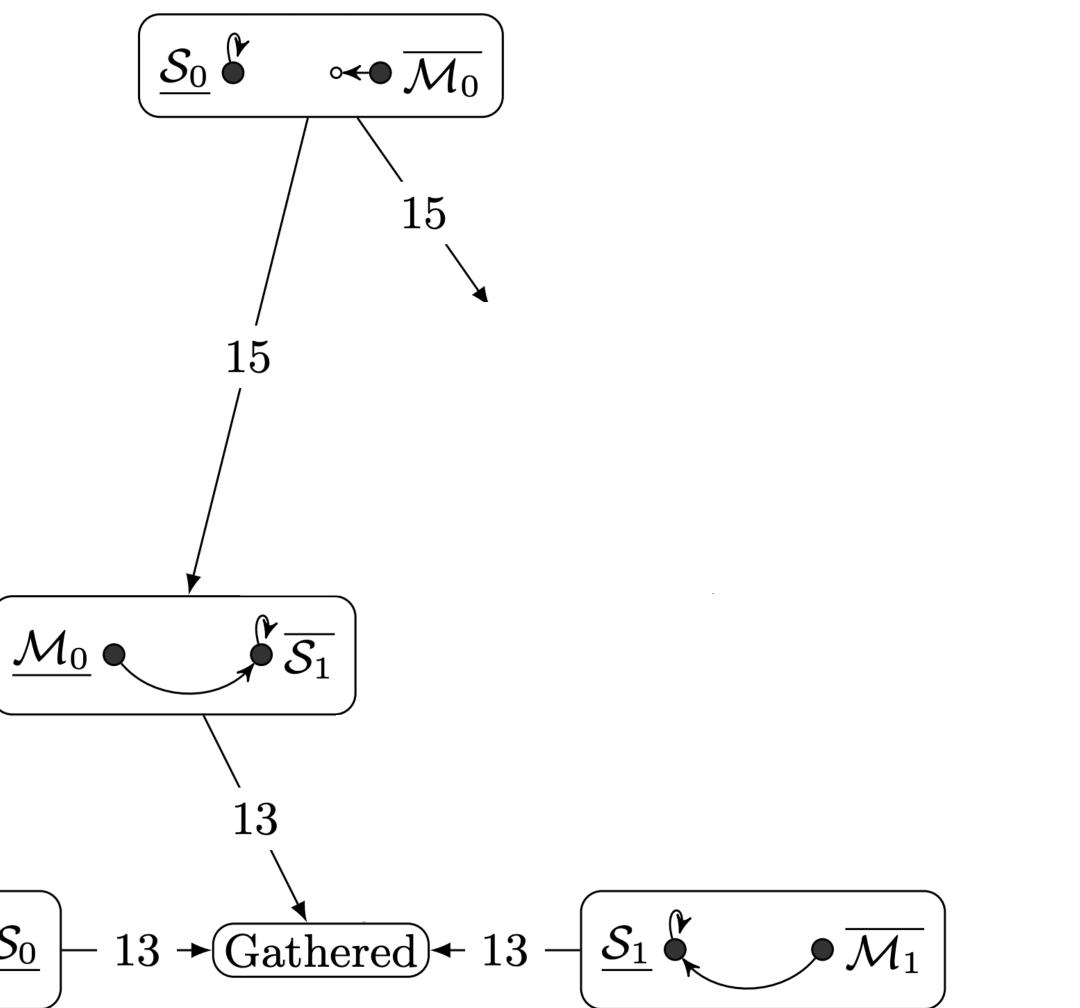


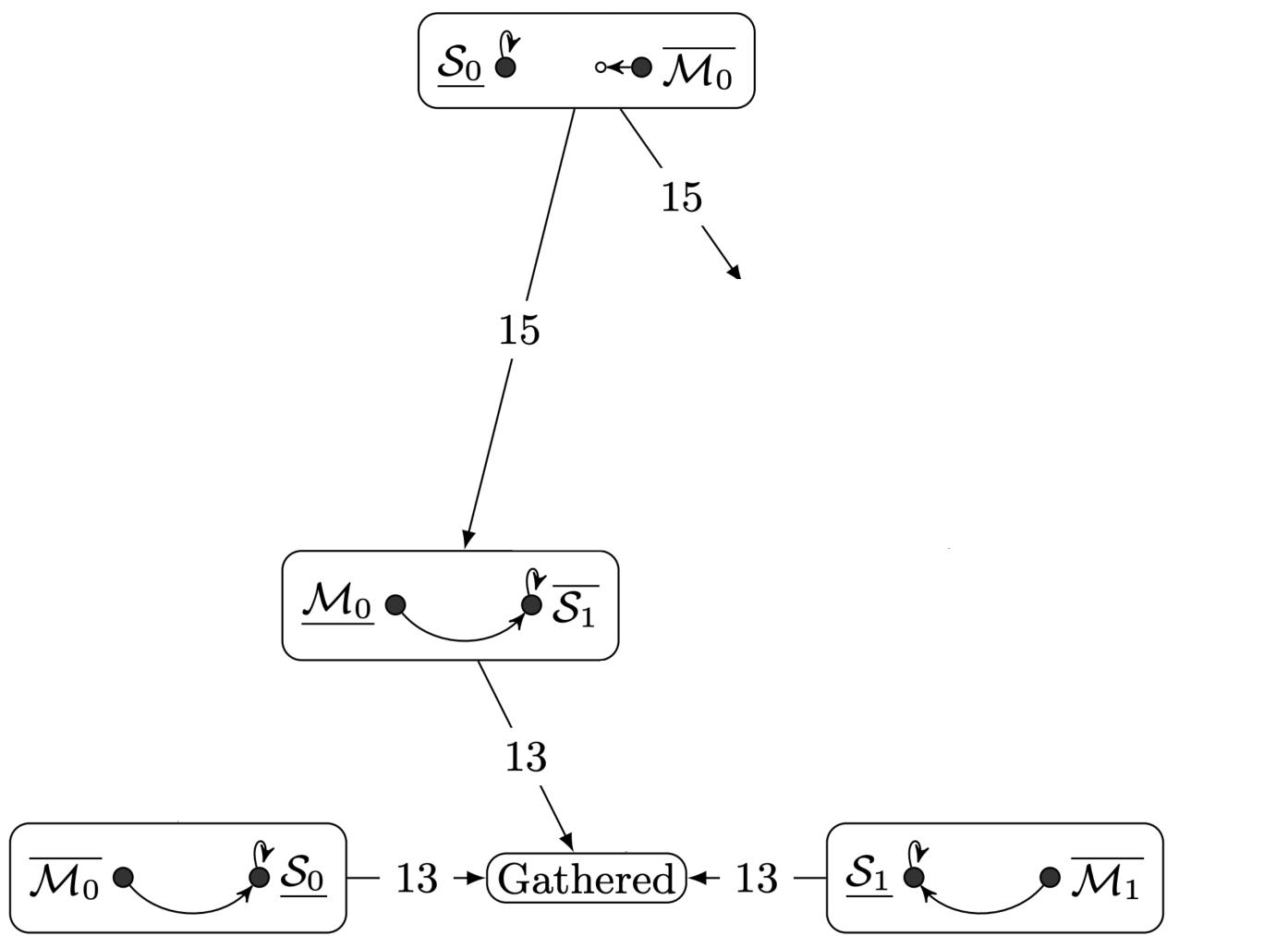




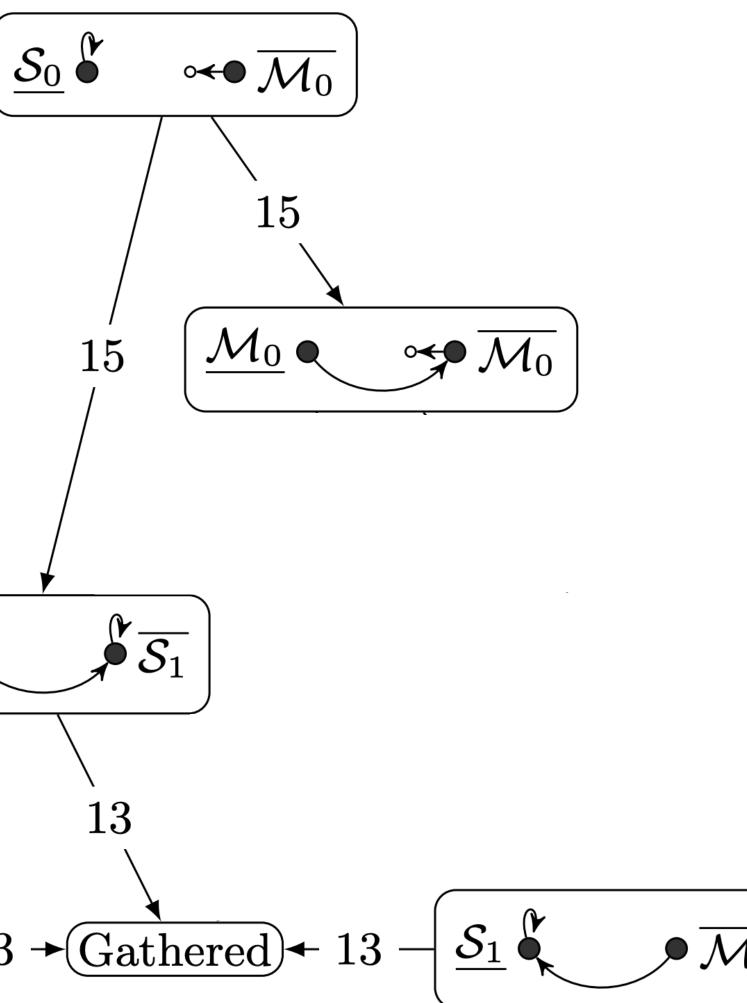
Algo2 execution

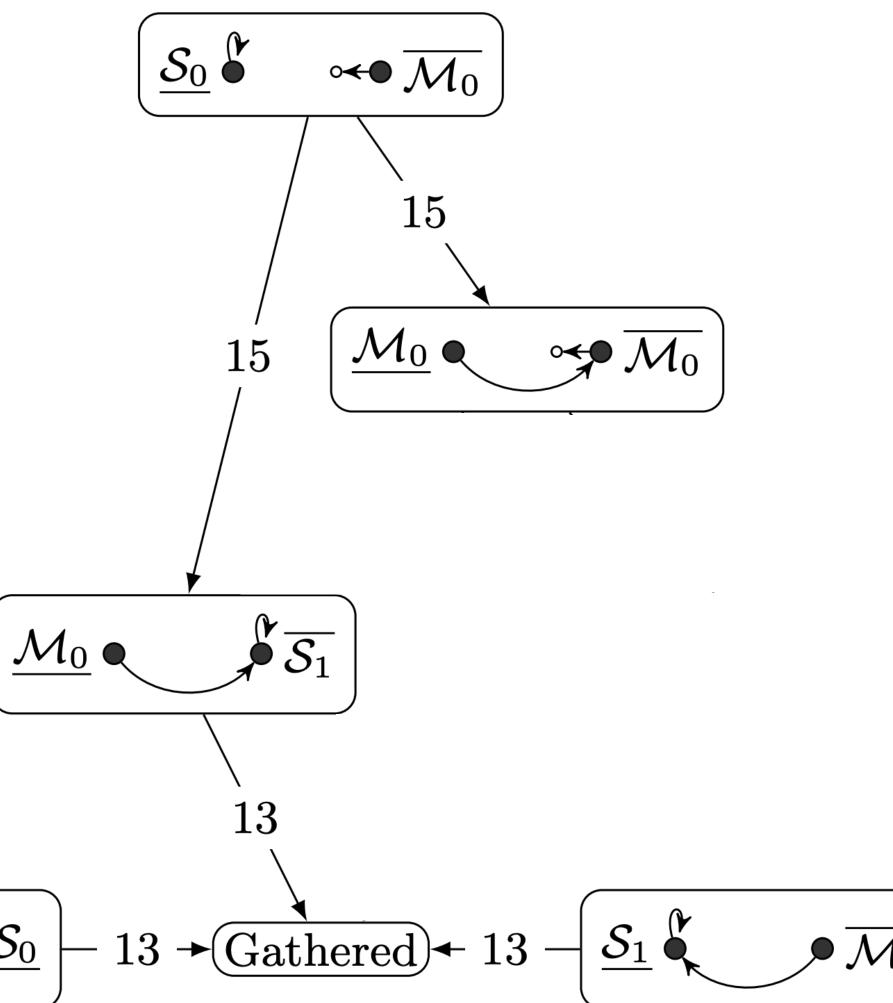


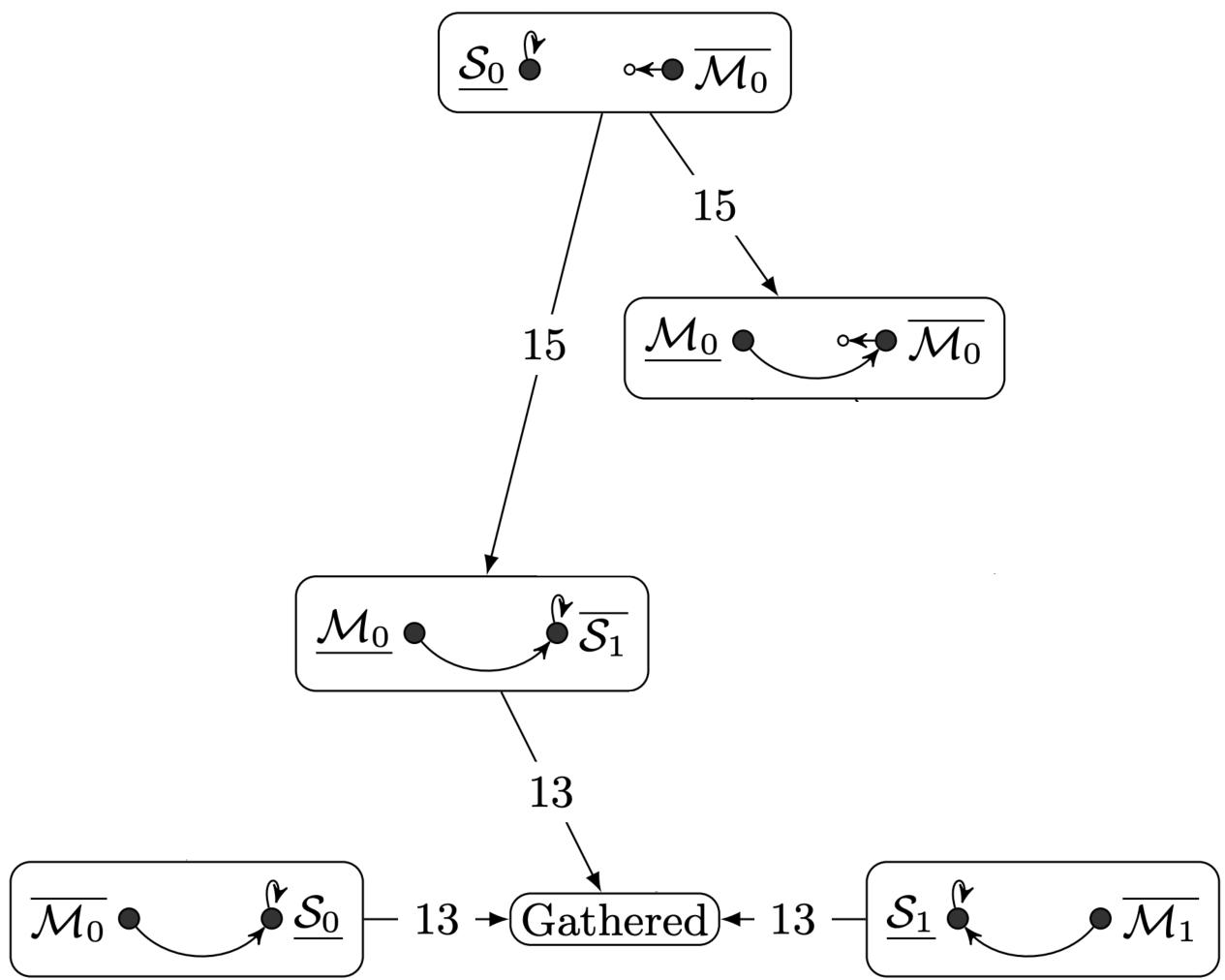




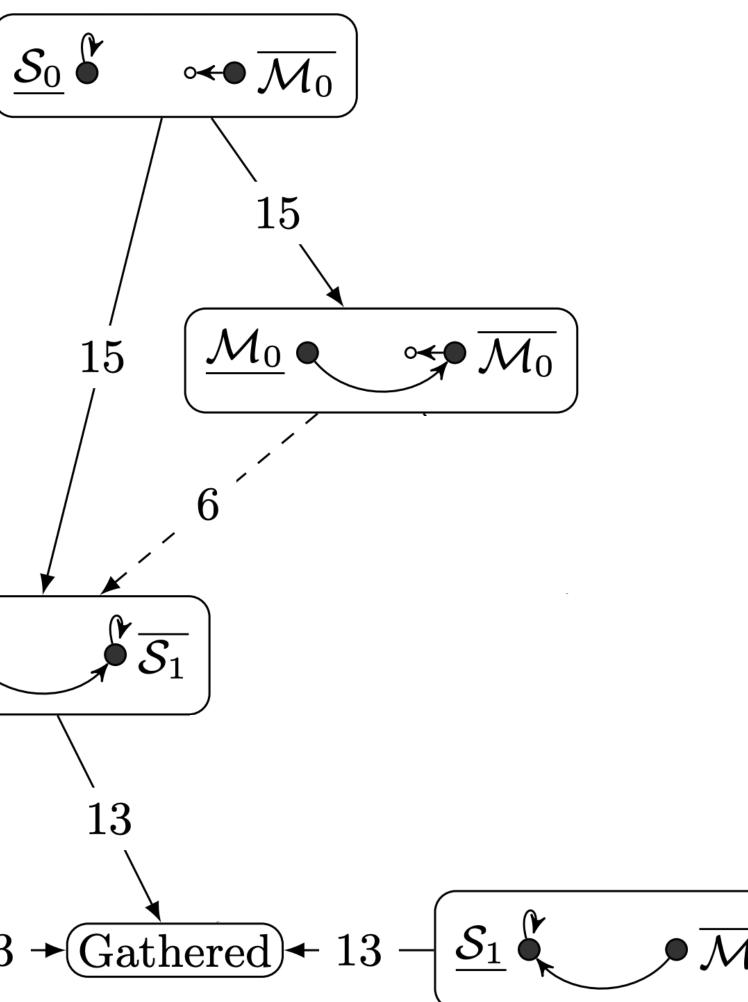
Algo2 execution

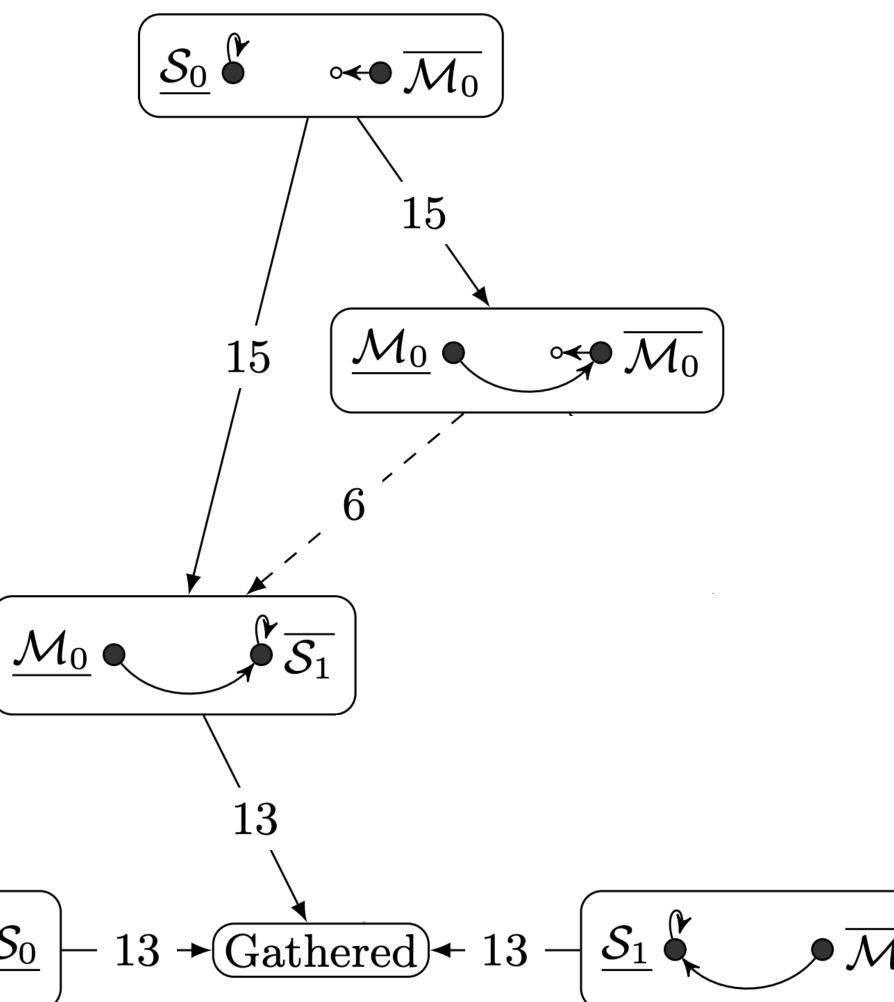


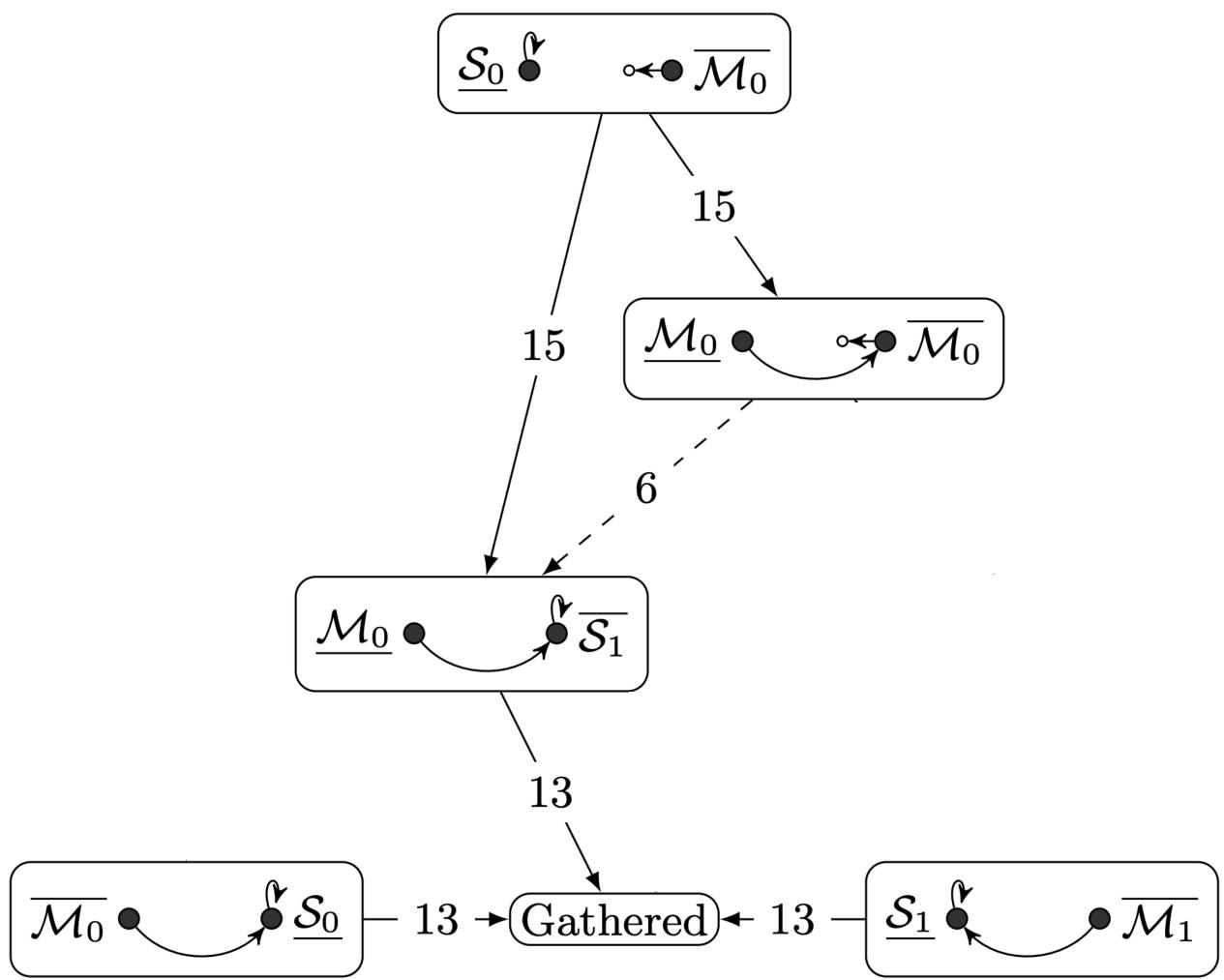




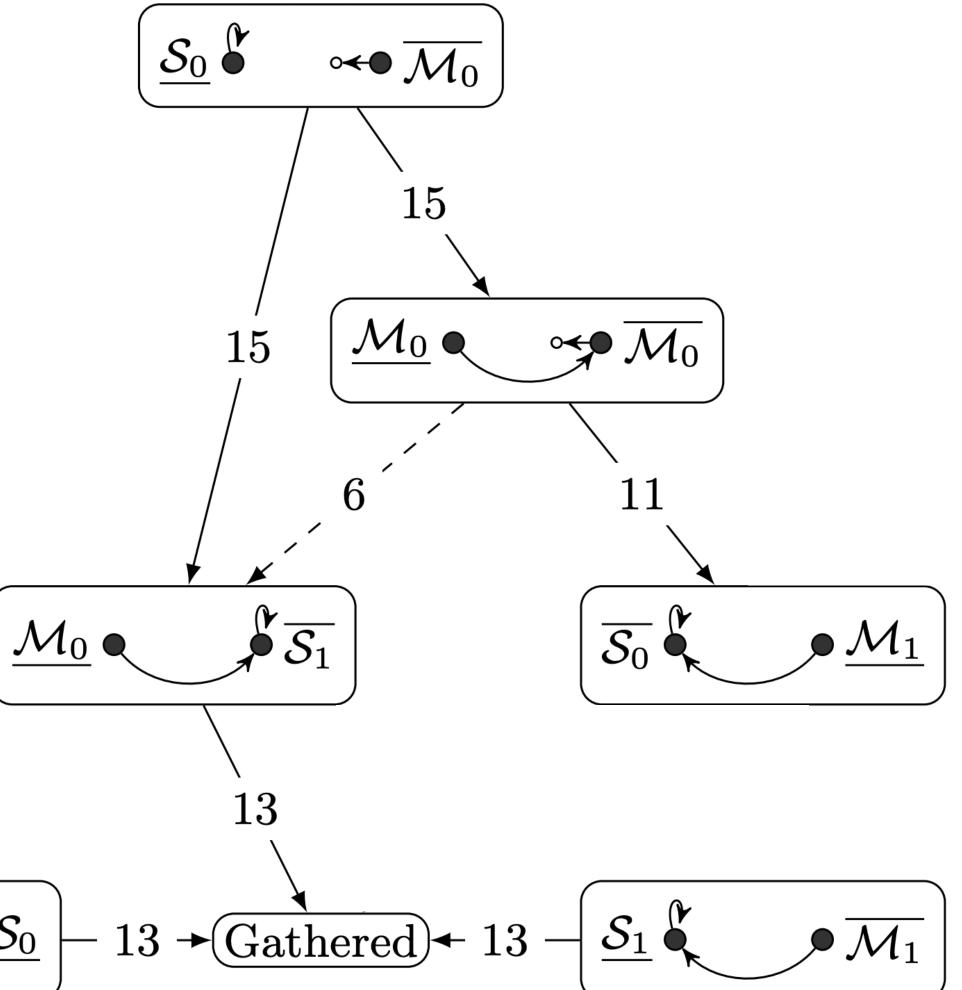
Algo2 execution

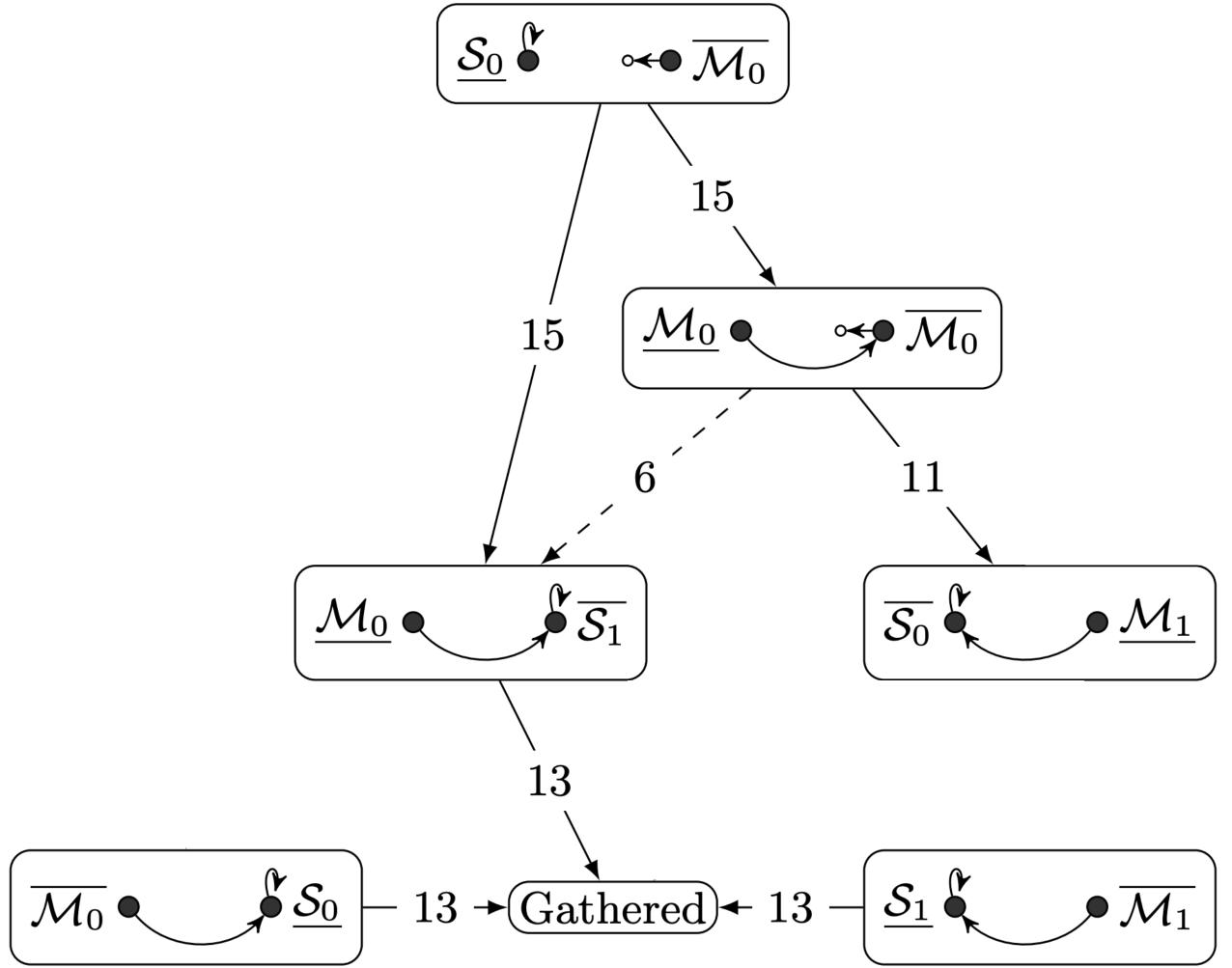




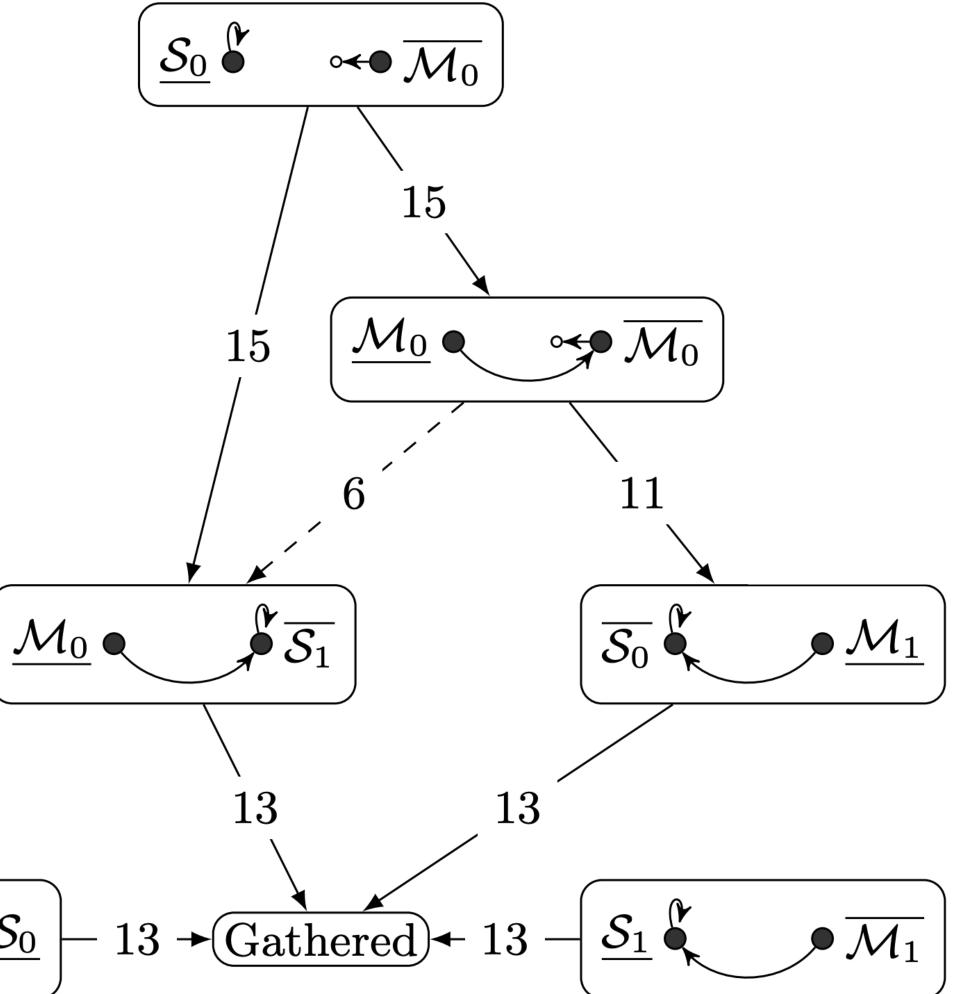


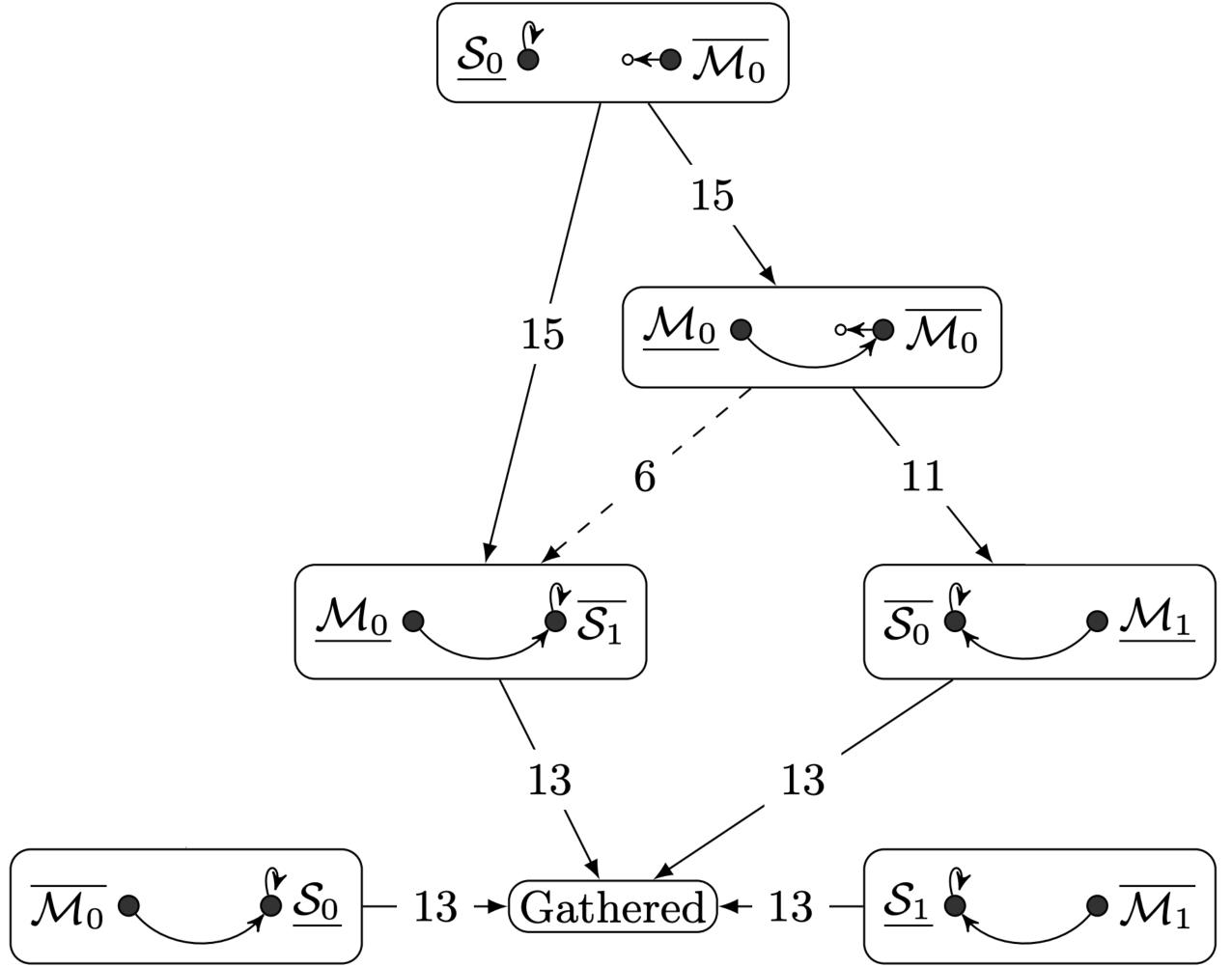
Algo2 execution





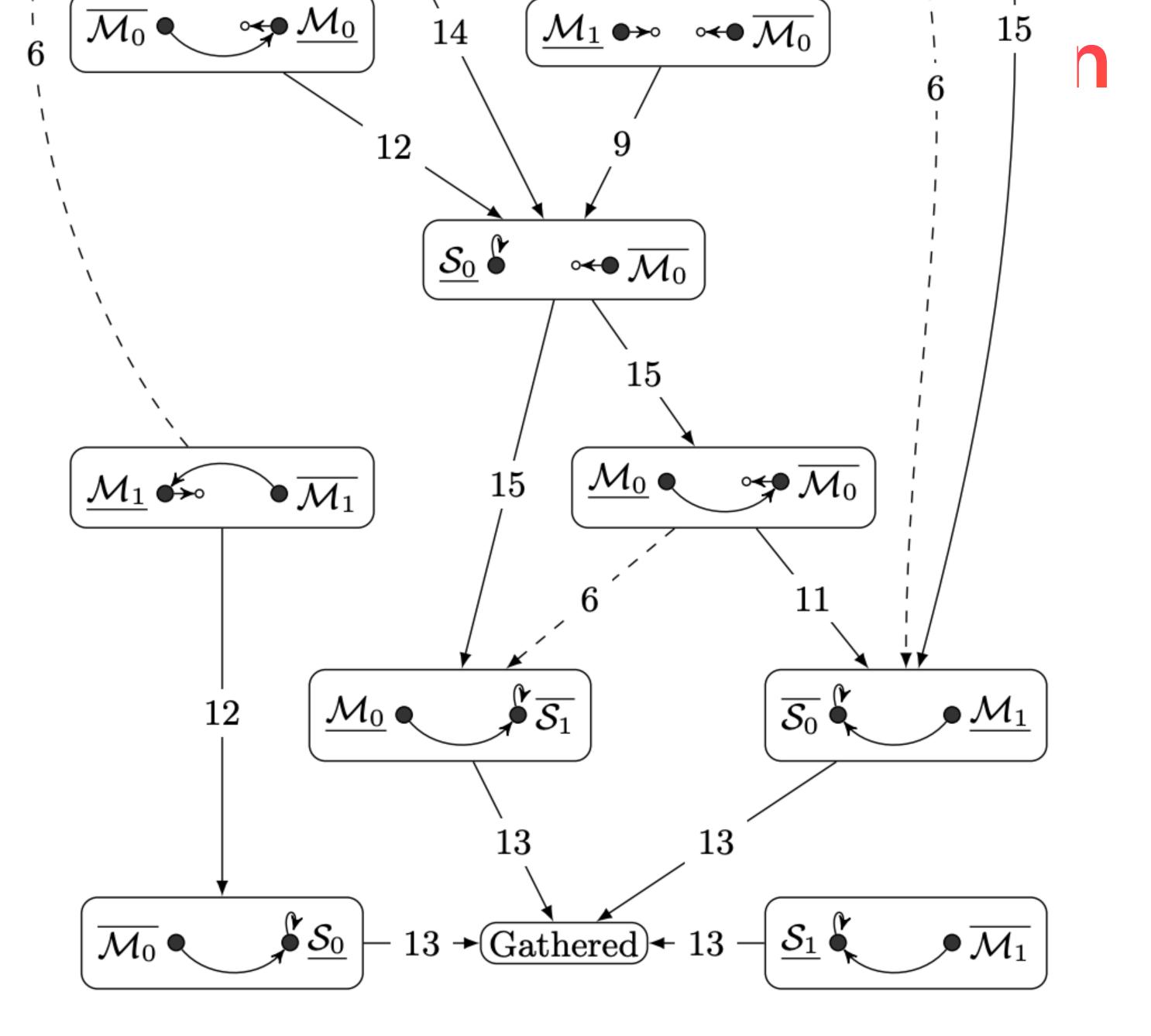
Algo2 execution



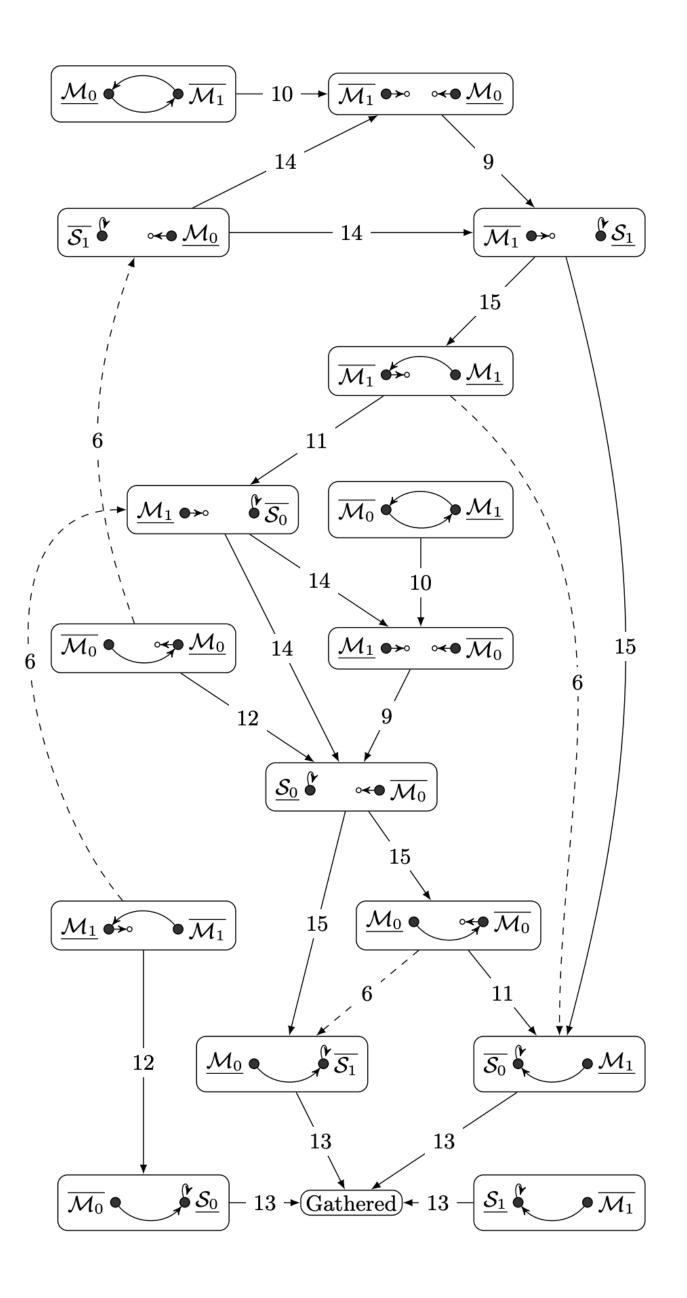


Algo2 execution

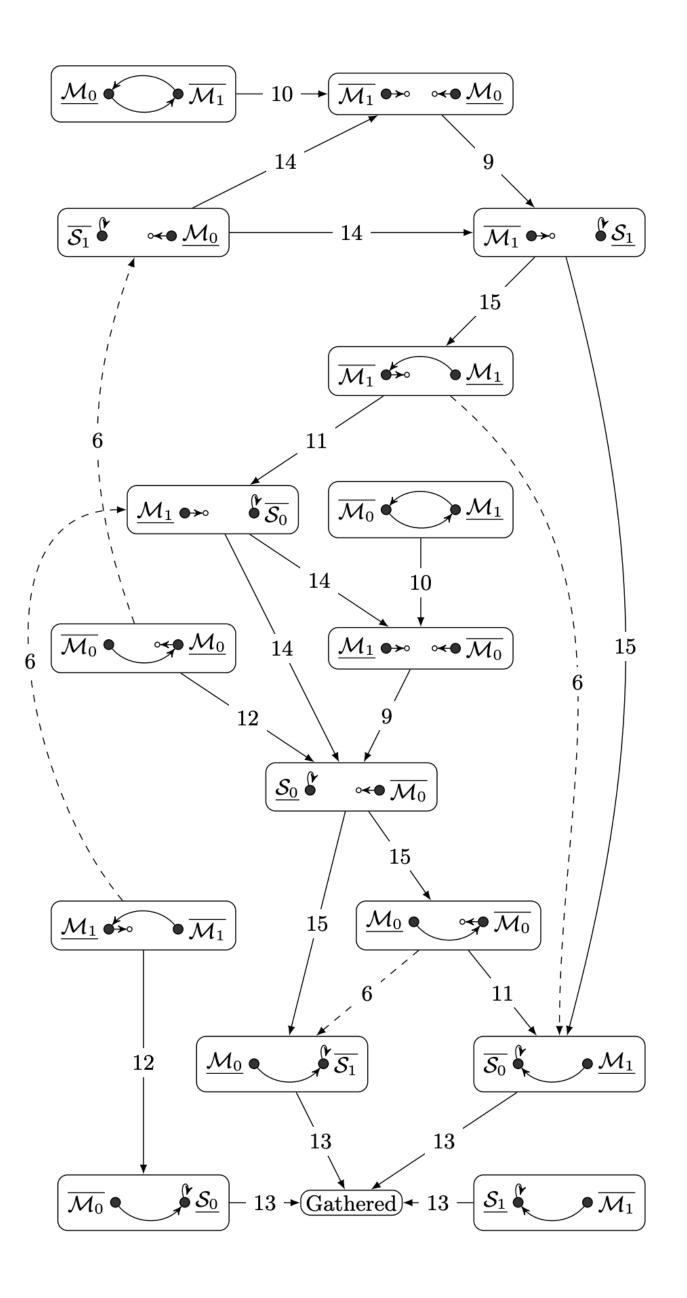
Rendezvous wh



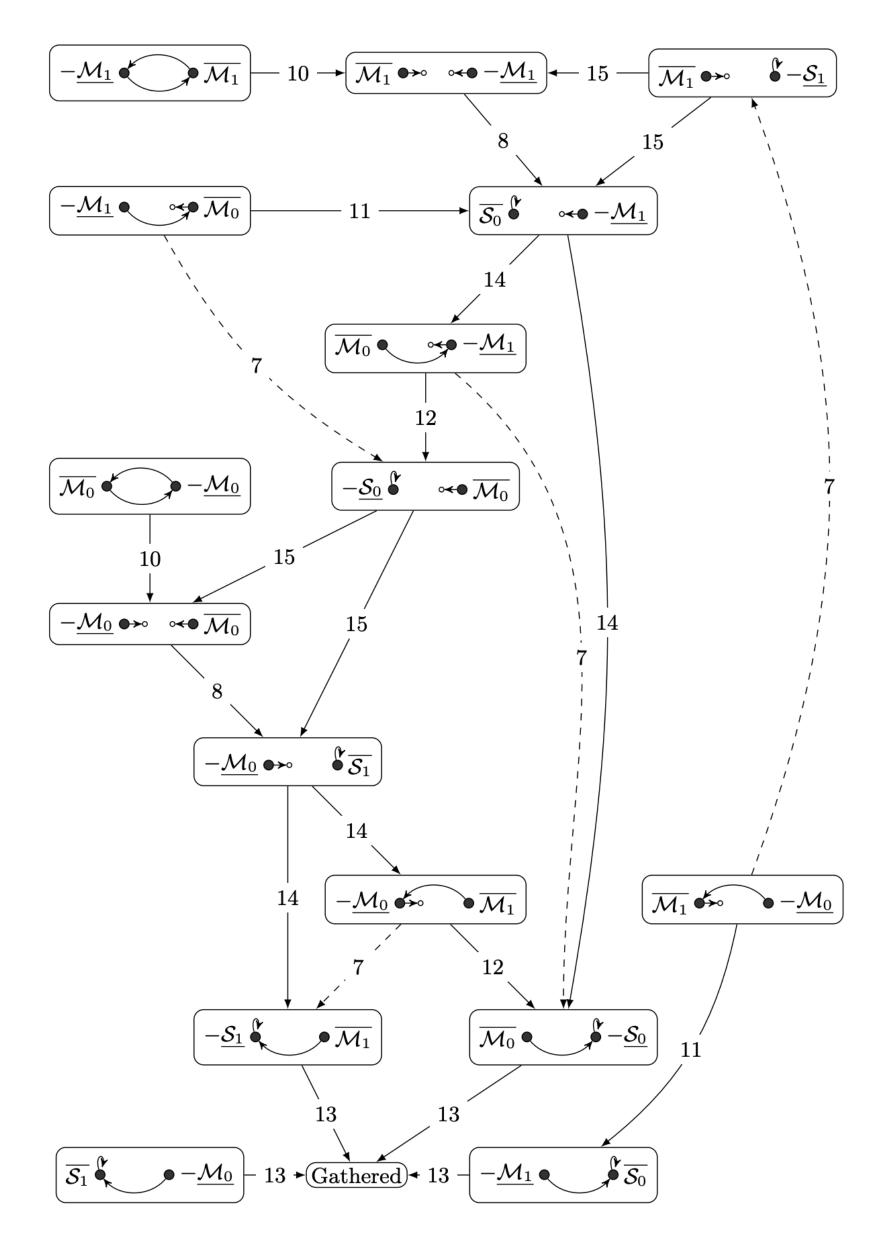
Rendezvous when $\rho = [\rho_{min}, \rho_{max}]$



Rendezvous when $\rho = [\rho_{min}, \rho_{max}]$



Algo2 execution



with a disagreement on the unit distance.

with a disagreement on the unit distance.

with a disagreement on the unit distance.

• What if we **do not** have known bounds on ρ ? We conjecture that the problem is unsolvable, but it is still open.

with a disagreement on the unit distance.

• What if we **do not** have known bounds on ρ ? We conjecture that the problem is unsolvable, but it is still open.

Thank you!