
Quentin Bramas < bramas@unistra.fr >

Stand Up Indulgent Rendezvous

Quentin Bramas, Anissa Lamani, Sébastien Tixeuil

Slides available at https://bramas.fr

1

Quentin Bramas < bramas@unistra.fr >

Model

2

Quentin Bramas < bramas@unistra.fr >

Model

• Two Robots

2

Quentin Bramas < bramas@unistra.fr >

Model

• Two Robots
• No Communication

2

Quentin Bramas < bramas@unistra.fr >

Model

• Two Robots
• No Communication
• No Memory

2

Quentin Bramas < bramas@unistra.fr >

Model

• Two Robots
• No Communication
• No Memory
• Disoriented

2

Quentin Bramas < bramas@unistra.fr >

Model

• Two Robots
• No Communication
• No Memory
• Disoriented
• No Common Unit-Distance

2

Quentin Bramas < bramas@unistra.fr >

Model

3

Quentin Bramas < bramas@unistra.fr >

Model

• What they do?  
Look (where is the other robot?) 
Compute (where am I going next?) 
Move (who am I?)

3

Quentin Bramas < bramas@unistra.fr >

Model

• What they do?  
Look (where is the other robot?) 
Compute (where am I going next?) 
Move (who am I?)

• When?

3

Quentin Bramas < bramas@unistra.fr >

Model

• What they do?  
Look (where is the other robot?) 
Compute (where am I going next?) 
Move (who am I?)

• When?
• Fully-Synchronous: 

 Robot 1: LCM LCM LCM LCM LCM LCM … 
 Robot 2: LCM LCM LCM LCM LCM LCM …

3

Quentin Bramas < bramas@unistra.fr >

Model

• What they do?  
Look (where is the other robot?) 
Compute (where am I going next?) 
Move (who am I?)

• When?
• Fully-Synchronous: 

 Robot 1: LCM LCM LCM LCM LCM LCM … 
 Robot 2: LCM LCM LCM LCM LCM LCM …

• Semi-Synchronous: 
 Robot 1: LCM LCM LCM LCM LCM LCM … 
 Robot 2: LCM LCM LCM LCM LCM LCM …

3

Quentin Bramas < bramas@unistra.fr >

The Rendezvous Problem

4

Quentin Bramas < bramas@unistra.fr >

The Rendezvous Problem

• What we want:

4

Quentin Bramas < bramas@unistra.fr >

The Rendezvous Problem

• What we want:
Starting from an arbitrary configuration

4

Quentin Bramas < bramas@unistra.fr >

The Rendezvous Problem

• What we want:
Starting from an arbitrary configuration

After a finite number of rounds

4

Quentin Bramas < bramas@unistra.fr >

The Rendezvous Problem

• What we want:
Starting from an arbitrary configuration

After a finite number of rounds

End up (and remain) at the same position

4

Quentin Bramas < bramas@unistra.fr >

Related Work

5

Quentin Bramas < bramas@unistra.fr >

Related Work

• Suzuki-Yamashita (99)

5

Quentin Bramas < bramas@unistra.fr >

Related Work

• Suzuki-Yamashita (99)
• Solvable in FSYNC

5

Quentin Bramas < bramas@unistra.fr >

Related Work

• Suzuki-Yamashita (99)
• Solvable in FSYNC
• Solvable in SSYNC with common coordinate system.

5

Quentin Bramas < bramas@unistra.fr >

Related Work

• Suzuki-Yamashita (99)
• Solvable in FSYNC
• Solvable in SSYNC with common coordinate system.
• Not solvable in SSYNC without common coordinate system.

5

Quentin Bramas < bramas@unistra.fr >

What if robots may crash

6

Quentin Bramas < bramas@unistra.fr >

What if robots may crash

• Two Possibilities:

6

Quentin Bramas < bramas@unistra.fr >

What if robots may crash

• Two Possibilities:
Ignore crashed robots (weak gathering)

6

Quentin Bramas < bramas@unistra.fr >

What if robots may crash

• Two Possibilities:
Ignore crashed robots (weak gathering)

Gather at the position of the crashed robot  
(strong gathering)

6

Quentin Bramas < bramas@unistra.fr >

Related Work

7

Quentin Bramas < bramas@unistra.fr >

Related Work

7

Quentin Bramas < bramas@unistra.fr >

Related Work

• Strong gathering:

7

Quentin Bramas < bramas@unistra.fr >

Related Work

• Strong gathering:
• Not possible when f > 1

7

Quentin Bramas < bramas@unistra.fr >

Related Work

• Strong gathering:
• Not possible when f > 1
• Possible if robots move one at a time (round-

robin SSYNC)

7

Quentin Bramas < bramas@unistra.fr >

Related Work

• Strong gathering:
• Not possible when f > 1
• Possible if robots move one at a time (round-

robin SSYNC)
• Weak gathering (n-robots) tolerating crash faults:

7

Quentin Bramas < bramas@unistra.fr >

Related Work

• Strong gathering:
• Not possible when f > 1
• Possible if robots move one at a time (round-

robin SSYNC)
• Weak gathering (n-robots) tolerating crash faults:

• possible for any f in SSYNC with multiplicity
detection

7

Quentin Bramas < bramas@unistra.fr >

The Stand Up Indulgent  
Rendezvous Problem

• What we want:
Starting from an arbitrary configuration

After a finite number of rounds

End up (and remain) at the same position

Even if one robot crashes (strong gathering)

8

Quentin Bramas < bramas@unistra.fr >

Summary

9

Rendezvous SUIR
SSYNC

oblivious, disoriented Impossible [SY99]

SSYNC
oblivious, common x-axis

SSYNC
oblivious, common x-y-axis Possible [SY99]

SSYNC
luminous, common x-y-axis Possible

FSYNC
oblivious, disoriented Possible [SY99]

Quentin Bramas < bramas@unistra.fr >

Summary

10

Rendezvous SUIR
SSYNC

oblivious, disoriented Impossible [SY99] Impossible (our paper)

SSYNC
oblivious, common x-axis Impossible (our paper)

SSYNC
oblivious, common x-y-axis Possible [SY99] Impossible (our paper)

SSYNC
luminous, common x-y-axis Possible Impossible (our paper)

FSYNC
oblivious, disoriented Possible [SY99]

Quentin Bramas < bramas@unistra.fr >

Summary

11

Rendezvous SUIR
SSYNC

oblivious, disoriented Impossible [SY99] Impossible (our paper)

SSYNC
oblivious, common x-axis Impossible (our paper)

SSYNC
oblivious, common x-y-axis Possible [SY99] Impossible (our paper)

SSYNC
luminous, common x-y-axis Possible Impossible (our paper)

FSYNC
oblivious, disoriented Possible [SY99] Possible (our paper)

Quentin Bramas < bramas@unistra.fr >

Summary

12

Rendezvous SUIR
SSYNC

oblivious, disoriented Impossible [SY99] Impossible (our paper)

SSYNC
oblivious, common x-axis Possible (our paper) Impossible (our paper)

SSYNC
oblivious, common x-y-axis Possible [SY99] Impossible (our paper)

SSYNC
luminous, common x-y-axis Possible Impossible (our paper)

FSYNC
oblivious, disoriented Possible [SY99] Possible (our paper)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

13

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

14

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

14

Lemma: in an execution, if only one robot is activated, then there is a round when is
dictated to move to the other robot.

r r

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

14

Lemma: in an execution, if only one robot is activated, then there is a round when is
dictated to move to the other robot.

r r

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Proof: Indeed, if the other robot is crashed, we know that in finite number of rounds
moves to the other robot.

r

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

If is dictated to move to , then activate only r p ≠ r′ r

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

If is dictated to move to , then activate only r p ≠ r′ r
Otherwise, If is dictated to move to , then activate only r′ p ≠ r r′

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

If is dictated to move to , then activate only r p ≠ r′ r
Otherwise, If is dictated to move to , then activate only r′ p ≠ r r′
Otherwise, activate both robots.

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

If is dictated to move to , then activate only r p ≠ r′ r
Otherwise, If is dictated to move to , then activate only r′ p ≠ r r′
Otherwise, activate both robots.

The scheduler is fair otherwise there exists an execution where only (or) is
activated, without moving to the other robot, contradicting the previous Lemma.

r r′

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Impossibility Result

15

Let and be the two robots.r r′

If is dictated to move to , then activate only r p ≠ r′ r
Otherwise, If is dictated to move to , then activate only r′ p ≠ r r′
Otherwise, activate both robots.

The scheduler is fair otherwise there exists an execution where only (or) is
activated, without moving to the other robot, contradicting the previous Lemma.

r r′

After each round the robots are not gathered.

Let A be an algorithm that solves the SUIR problem with lights
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

16

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

17

How to define an algorithm:

A rule defines the target for a set of views

Examples:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

18

Example execution:

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

19

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

19

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

19

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

20

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

21

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

22

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

22

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

22

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

22

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

22

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

23

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

23

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

23

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

24

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

24

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

24

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

25

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

25

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

26

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

26

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

26

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

27

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

27

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

27

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

28

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

28

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

29

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

29

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

30

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

30

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

30

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

31

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

31

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

31

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

31

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

31

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

32

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

32

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

32

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

32

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

32

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

33

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Solving The SUIR in FSYNC

33

Assume for now that robots :
• Are on an oriented line
• Have a common unit distance
• Have rigid movements

Quentin Bramas < bramas@unistra.fr >

Conclusion

34

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

We defined an algorithm solving the SUIR problem, in FSYNC

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

We defined an algorithm solving the SUIR problem, in FSYNC

We showed that in SSYNC, the problem is not solvable, even with lights

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

We defined an algorithm solving the SUIR problem, in FSYNC

We showed that in SSYNC, the problem is not solvable, even with lights

Future Work

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

We defined an algorithm solving the SUIR problem, in FSYNC

We showed that in SSYNC, the problem is not solvable, even with lights

Generalize our results with robots tolerating at most one faultn

Future Work

Quentin Bramas < bramas@unistra.fr >

Conclusion

35

We defined an algorithm solving the SUIR problem, in FSYNC

We showed that in SSYNC, the problem is not solvable, even with lights

Generalize our results with robots tolerating at most one faultn

Future Work

Thank you for your attention

