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• When?
• Fully-Synchronous: 

  Robot 1: LCM LCM LCM LCM LCM LCM … 
  Robot 2: LCM LCM LCM LCM LCM LCM …

• Semi-Synchronous: 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Related Work

• Strong gathering:
• Not possible when  f > 1 
• Possible if robots move one at a time (round-

robin SSYNC)
• Weak gathering (n-robots) tolerating crash faults:

• possible for any  f  in SSYNC with multiplicity 
detection
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• What we want:
Starting from an arbitrary configuration

After a finite number of rounds

End up (and remain) at the same position

Even if one robot crashes (strong gathering)
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dictated to move to the other robot.
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Let A be an algorithm that solves the SUIR problem with lights 
(infinite memory and communication capabilities)

Proof: Indeed, if the other robot is crashed, we know that in finite number of rounds  
moves to the other robot.
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If  is dictated to move to  , then activate only r p ≠ r′ r
Otherwise, If  is dictated to move to  , then activate only r′ p ≠ r r′ 
Otherwise, activate both robots.

The scheduler is fair otherwise there exists an execution where only  (or ) is 
activated, without moving to the other robot, contradicting the previous Lemma.

r r′ 

After each round the robots are not gathered.

Let A be an algorithm that solves the SUIR problem with lights 
(infinite memory and communication capabilities)

Theorem: SUIR is not Solvable in SSYNC (even with lights and common coordinate system)

Consider the following scheduler:
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