Crash-tolerant Exploration of Trees by Energy Sharing Mobile Agents

Quentin Bramas, Toshimitsu Masuzawa and Sebastien Tixeuil

University of Strasbourg, Osaka University, Sorbonne University

SAND 2024

exchange energy

exchange energy

exchange energy

Find:

2 Algorithms

7

Find: 2 Algorithms

Once de played, - autonomous - commisse when meet

Synchronous

Asynchronous

Exploring the line with 2 agents

Exploring the line with 2 agents

Exploring the line with 2 agents

One easy algorithm

$en_0 \geq \ell + x \land en_1 \geq \ell + y$

Another easy algorithm

$en_0 \ge d \land en_1 \ge d \land en_0 + en_1 \ge 3\ell + d$

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

Same for the synchronous case

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

Same for the synchronous case

And for trees?

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

Same for the synchronous case

And for trees?

Almost tight algorithms

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

Same for the synchronous case

And for trees?

Almost tight algorithms

Thank you

We found the necessary conditions and the corresponding algorithms

$$c_{1} : (en_{0} \ge x + y) \land (en_{1} \ge y) \land (en_{0} + en_{1} \ge 2\ell + x + y)$$

$$c_{2} : (en_{0} \ge \ell - x) \land (en_{1} \ge 2\ell - (x + y)) \land (en_{0} + en_{1} \ge 4\ell - (x + y))$$

$$c_{3} : (en_{0} \ge \ell + x) \land (en_{1} \ge 2\ell - y)$$

$$c_{4} : (en_{0} \ge y - x) \land (en_{1} \ge y - x) \land (en_{0} + en_{1} \ge min(3\ell + y - x, 2\ell - x + 3y))$$

Same for the synchronous case

And for trees?

Almost tight algorithms

Thank you

Synchronous lines

Trees

$ct_1 \ : \ (en_0 \ge x) \land (en_1 \ge x) \land (en_0 + en_1 \ge 2W + 2d\lceil \log_{3/2} W \rceil + x + 2)$

The following shows the actions of the agents. It is assumed that subtrees T_1, T_2, \ldots, T_k $(k \leq \log_{3/2} W)$ are a priori determined by the recursive centroid-based partitions.

- **Step 0:** The agents meet on the shortest path between their initial locations. (This is executed only once at the beginning of the execution.) Set i = 1.
- **Step 1:** When they meet at a point, say p (possibly on an edge), they evenly share the remaining energy.
- **Step 2** Agent r_0 (resp. r_1) performs the following sequence of moves: move to the nearest node v_i of T_i ; traverse T_i along a Eulerian tour of T_i in the clockwise direction (resp. the counter-clockwise direction) until the agent (i) meets the other, or (ii) completes the Eulerian tour traversal without meeting the other; move toward p until the agent meets the other in case of ii) if i < k; If i < k, set p be the meeting point, set i = i + 1, and continue from **Step 1**.

▶ **Theorem 12.** If the agents start at the center of an unweighted star of size $\Delta + 1$, then the total energy consumption of any algorithm cannot be in $2\Delta + 2\log(o(\Delta))$.

 ct_2 : $(en_0 \ge x) \land (en_1 \ge x) \land (en_0 + en_1 \ge 2W + d + x)$

▶ Theorem 13. There exists an infinite family of trees such that the required total energy is at least $2W + \frac{d}{2} - 3$